34 research outputs found

    Experimental and Numerical Assessment of a Novel All-In-One Adsorption Thermal Storage with Zeolite for Thermal Solar Applications

    Get PDF
    The paper discusses the performances of a novel all-in-one adsorption thermal storage based on steam vapour and zeolite 13X for industrial end-users. Steam production/condensation for the adsorption/desorption processes are executed within the same vacuum reactor, where the zeolite is heated and cooled by the thermal fluid which flows within a heat exchanger. Both experimental approach and numerical method are used to assess the behaviour and energy performances of the novel system. So, a medium-scale prototype was constructed and some experimental tests for the charging and discharging phases were carried out, producing useful data for the validation of a time-dependent model of the adsorption/desorption processes, which resulted very reliable in the simulation of the thermal storage system. The charging and discharging efficiency of thermal energy can reach values higher than 80% and 50%, respectively. The experimental campaign and the simulative activities highlighted some operative criticalities of the all-in-one thermal storage system and suggested some possible technical improvements to face and solve them

    DNI Estimation Procedures for the Assessment of Solar Radiation Availability in Concentrating Systems

    Get PDF
    Abstract DNI (Direct Normal Irradiance) is the resource utilized by solar concentrators. Besides, the determination of DNI is needed in the models for the estimation of global irradiance on tilted planes, which is the input to flat-plate systems. This paper describes a study of different estimation procedures for the assessment of the DNI , using experimental data with a time scale of 1 min, taken at two different latitudes. The analyzed approaches include measuring techniques and models. The results show that the different estimation methods can lead to quite different conclusions when comparing the solar radiation availability in concentrating and flat-plate systems and this can affect the energy and economic evaluations. Based on the experimental analysis, indications for reducing the uncertainty in the estimation of DNI are discussed

    Congenital myopathy with hanging big toe due to homozygous myopalladin (MYPN) mutation

    Get PDF
    Background: Myopalladin (MYPN) is a component of the sarcomere that tethers nebulin in skeletal muscle and nebulette in cardiac muscle to alpha-actinin at the Z lines. Autosomal dominant MYPN mutations cause hypertrophic, dilated, or restrictive cardiomyopathy. Autosomal recessive MYPN mutations have been reported in only six families showing a mildly progressive nemaline or cap myopathy with cardiomyopathy in some patients. Case presentation: A consanguineous family with congenital to adult-onset muscle weakness and hanging big toe was reported. Muscle biopsy showed minimal changes with internal nuclei, type 1 fiber predominance, and ultrastructural defects of Z line. Muscle CT imaging showed marked hypodensity of the sartorius bilaterally and MRI scattered abnormal high-intensity areas in the internal tongue muscle and in the posterior cervical muscles. Cardiac involvement was demonstrated by magnetic resonance imaging and late gadolinium enhancement. Whole exome sequencing analysis identified a homozygous loss of function single nucleotide deletion in the exon 11 of the MYPN gene in two siblings. Full-length MYPN protein was undetectable on immunoblotting, and on immunofluorescence, its localization at the Z line was missed. Conclusions: This report extends the phenotypic spectrum of recessive MYPN-related myopathies showing: (1) the two patients had hanging big toe and the oldest one developed spine and hand contractures, none of these signs observed in the previously reported patients, (2) specific ultrastructural changes consisting in Z line fragmentation, but (3) no nemaline or caps on muscle pathology

    Allele-specific silencing as therapy for familial amyotrophic lateral sclerosis caused by the p.G376D TARDBP mutation

    Get PDF
    Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the degeneration of motor neurons. There is no treatment for this disease that affects the ability to move, eat, speak and finally breathe, causing death. In an Italian family, a heterozygous pathogenic missense variant has been previously discovered in Exon 6 of the gene TARDBP encoding the TAR DNA-binding protein 43 protein. Here, we developed a potential therapeutic tool based on allele-specific small interfering RNAs for familial amyotrophic lateral sclerosis with the heterozygous missense mutation c.1127G > A. We designed a small interfering RNA that was able to diminish specifically the expression of the exogenous Green Fluorescent Protein (TAR DNA-binding protein 43(G376D) mutant protein) in HEK-293T cells but not that of the Green Fluorescent Protein (TAR DNA-binding protein 43 wild-type). Similarly, this small interfering RNA silenced the mutated allele in fibroblasts derived from patients with amyotrophic lateral sclerosis but did not silence the wild-type gene in control fibroblasts. In addition, we established that silencing the mutated allele was able to strongly reduce the pathological cellular phenotypes induced by TAR DNA-binding protein 43(G376D) expression, such as the presence of cytoplasmic aggregates. Thus, we have identified a small interfering RNA that could be used to silence specifically the mutated allele to try a targeted therapy for patients carrying the p.G376D TAR DNA-binding protein 43 mutation

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p

    EXTERNAL RADIOMETRIC CALIBRATION ACTIVITY ON ITALIAN TEST-SITE FOR THE ENVISAT MISSION

    No full text
    This paper deals with the programmed external calibration activity for ENVISAT ASAR, to be carried out within the experiment A.O. ID 662. The selected site, already utilised for other SAR missions, is located in Southern Italy, where calibration targets both active and passive will be deployed. A C-band scatterometer will also be used. The purpose is to gain additional information on the ASAR data radiometric characteristics. After a site description, the calibration instrumentation and its expected performances are presented, illustrating the envisaged radiometric calibration approach. Finally, a brief illustration of ground truth measurements is given

    Repetitive transcranial magnetic stimulation for ALS - A preliminary controlled study

    No full text
    Repetitive transcranial magnetic stimulation (rTMS) of brain can modulate cortical neurotransmission, a novel paradigm of repetitive stimulation termed continuous theta-burst stimulation (cTBS) produces a pronounced and prolonged suppression of motor cortex excitability. The aim of this preliminary study was to investigate whether cTBS of motor cortex could have any beneficial effect in patients with amyotrophic lateral sclerosis (ALS). We performed a double-blind, placebo-controlled trial. Twenty patients with definite ALS were randomly allocated to blinded active or placebo stimulation. Repetitive stimulation of the motor cortex was performed for five consecutive days every month for six consecutive months. The primary outcome was the rate of decline as evaluated with the ALS functional rating scale. The treatment was well tolerated by the patients. Fifteen patients (seven active and eight sham) completed the study and were included in the 6-months analysis. Both active and sham patients deteriorated during treatment, however, active patients showed a modest but significant slowing of the deterioration rate. Though we cannot be sure whether the effects observed can be attributed to cTBS, because of the restricted number of patients studied, further investigation on a larger group of ALS patients is warranted. The results of the pilot study might open up a new therapeutic perspective in ALS based on neuromodulation
    corecore