73 research outputs found

    Characteristics and anticancer properties of Sunitinib malate-loaded poly-lactic-co-glycolic acid nanoparticles against human colon cancer HT-29 cells lines

    Get PDF
    Purpose: To develop poly-lactic-co-glycolic acid (PLGA) -based nanoparticles (NPs) for the delivery of sunitinib malate (STM) to colon cancer cells.Methods: Three different formulations (F1 – F3) were developed by nano-precipitation technique using various concentrations of PLGA. The NPs were evaluated for particle size, polydispersity index, zeta potential, drug entrapment, and drug loading, using differential scanning calorimetry (DSC), Fouriertransform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and scanning electron microscopy (SEM). Furthermore, in vitro drug release and anticancer studies were carried out on the formulations.Results: Among the three NPs, optimized NP (F3) of STM was chosen for in vitro anti-cancer study against H-29 human colon cancer cells lines based on its particle size (132.9 nm), PDI (0.115), zeta potential (-38.12 mV), entrapment efficiency (52.42 %), drug loading (5.24 %), and drug release (91.26 % in 48 h). A significant anti-cancer activity of the optimized NPs was observed, relative to free STM.Conclusion: These findings suggest that STM-loaded NPs possess significant anti-cancer activity against human colon cancer HT-29 cells lines.Keywords: Sunitinib malate, Poly-lactic-co-glycolic acid, Nanoparticles, Colon cance

    Neural Network-Based Prediction Model to Investigate the Influence of Temperature and Moisture on Vibration Characteristics of Skew Laminated Composite Sandwich Plates

    Get PDF
    The present study deals with the development of a prediction model to investigate the impact of temperature and moisture on the vibration response of a skew laminated composite sandwich (LCS) plate using the artificial neural network (ANN) technique. Firstly, a finite element model is generated to incorporate the hygro-elastic and thermo-elastic characteristics of the LCS plate using first-order shear deformation theory (FSDT). Graphite-epoxy composite laminates are used as the face sheets, and DYAD606 viscoelastic material is used as the core material. Non-linear strain-displacement relations are used to generate the initial stiffness matrix in order to represent the stiffness generated from the uniformly varying temperature and moisture concentrations. The mechanical stiffness matrix is derived using linear strain-displacement associations. Then the results obtained from the numerical model are used to train the ANN. About 11,520 data points were collected from the numerical analysis and were used to train the network using the Levenberg–Marquardt algorithm. The developed ANN model is used to study the influence of various process parameters on the frequency response of the system, and the outcomes are compared with the results obtained from the numerical model. Several numerical examples are presented and conferred to comprehend the influence of temperature and moisture on the LCS plates

    Assessment and Management of Atopic Dermatitis in Primary Care Settings

    Get PDF
    An increasingly common chronic inflammatory skin condition is atopic dermatitis (AD). It exhibits severe itching as well as recurring eczematous lesions. New difficulties for treatment selection and approach occur with the expansion of available therapy alternatives for healthcare professionals and patients.  The article highlights recent developments in scientific research on atopic dermatitis diagnosis and assessment that have led to the identification of novel therapeutic targets and the development of targeted therapies, both of which have the potential to completely change the way AD is treated, particularly in a primary care setting

    A robust computational investigation on C₆₀ fullerene nanostructure as a novel sensor to detect SCNˉ

    Get PDF
    This study explored on the adsorption properties and electronic structure of SCNˉ via density functional theory analysis on the exterior surfaces of C₆₀ and CNTs using B3LYP functional and 6-31G** standard basis set. Then adsorption of SCNˉ through nitrogen atom on the C60 fullerene is electrostatic (₋48.02 kJ molˉ1) in comparison with the C₅₉Al fullerene that shows covalently attached to fullerene surface (₋389.10 kJ mol̄ˉ1). Our calculations demonstrate that the SCNˉ adsorption on the pristine and Al-doped single-walled CNTs are ₋173.13 and ₋334.43 kJ molˉ1, indicating that the SCNˉ can be chemically bonded on the surface of Al-doped CNTs. Moreover, the adsorption of SCNˉ on the C₆₀ surface is weaker in comparison with C₅₉B, C₅₉Al, and C₅₉Ga systems but its electronic sensitivity improved in comparison with those of C₅₉B, C₅₉Al, and C₅₉Ga fullerenes. The evaluation of adsorption energy, energy gap, and dipole moment demonstrates that the pure fullerene can be exploited in the design practice as an SCNˉ sensor and C₅₉Al can be used for SCNˉ removal application

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    • 

    corecore