665 research outputs found

    Universal screening for meticillin-resistant Staphylococcus aureus : interim results from the NHS Scotland pathfinder project

    Get PDF
    Following recommendations from a Health Technology Assessment (HTA), a prospective cohort study of meticillin-resistant Staphylococcus aureus (MRSA) screening of all admissions (N = 29 690) to six acute hospitals in three regions in Scotland indicated that 7.5% of patientswere colonised on admission to hospital. Factors associated with colonisation included re-admission, specialty of admission (highest in nephrology, care of the elderly, dermatology and vascular surgery), increasing age, and the source of admission (care home or other hospital). Three percent of all those who were identified as colonised developed hospital-associated MRSA infection, compared with only 0.1% of those not colonised. Specialtieswith a high rate of colonisation on admission also had higher rates of MRSA infection. Very few patients refused screening (11 patients, 0.03%) or had treatment deferred (14 patients, 0.05%). Several organisational issues were identified, including difficulties in achieving complete uptake of screening (88%) or decolonisation (41%); the latter was largely due to short duration of stay and turnaround time for test results. Patient movement resulted in a decision to decontaminate all positive patients rather than just those in high risk specialties as proposed by the HTA. Issues also included a lack of isolation facilities to manage patients with MRSA. The study raises significant concerns about the contribution of decolonisation to reducing risks in hospital due to short duration of stay, and reinforces the central role of infection control precautions. Further study is required before the HTA model can be re-run and conclusions redrawn on the cost and clinical effectiveness of universal MRSA screening

    Nutrient‐dependent allometric plasticity in a male‐diphenic mite

    Get PDF
    Male secondary sexual traits often scale allometrically with body size. These allometries can be variable within species and may shift depending on environmental conditions, such as food quality. Such allometric plasticity has been hypothesized to initiate local adaptation and evolutionary diversification of scaling relationships, but is under-recorded, and its eco-evolutionary effects are not well understood. Here, we tested for allometric plasticity in the bulb mite (Rhizoglyphus robini), in which large males tend to develop as armed adult fighters with thickened third legs, while small males become adult scramblers without thickened legs. We first examined the ontogenetic timing for size- and growth-dependent male morph determination, using experimentally amplified fluctuations in growth rate throughout juvenile development. Having established that somatic growth and body size determine male morph expression immediately before metamorphosis, we examined whether the relationship between adult male morph and size at metamorphosis shifts with food quality. We found that the threshold body size for male morph expression shifts toward lower values with deteriorating food quality, confirming food-dependent allometric plasticity. Such allometric plasticity may allow populations to track prevailing nutritional conditions, potentially facilitating rapid evolution of allometric scaling relationships.Environmental Biolog

    The role of tortuosity in filtration efficiency: a general network model for filtration

    Get PDF
    Filters are composed of a complex network of interconnected pores each with tortuous paths. We present a general network model to describe a filter structure comprising a random network of interconnected pores, relaxing traditional assumptions made with simplified theoretical models. We use the model to examine the dependence of the filter performance on both its underlying pore structure (expressed through the pore interconnectivity and porosity gradient) and the feed composition (expressed through the size of the contaminants). We find that a simple scaling allows the performance curves over a wide range of the filter material properties to be mapped onto a single master curve. We also study the link between the tortuosity of a filter and its resulting performance, leading to further self-similarity observations. When we vary the properties of the feed, however, the performance curves are distinct from one another and do not collapse onto a single master curve. Our network model allows us to probe the behaviour of a complex and realistic filter configuration within a framework that is easy to implement and study, enabling accelerated testing and reducing experimental costs in filtration challenges

    Toward an understanding of the chemical ecology of alternative reproductive tactics in the bulb mite (Rhizoglyphus robini)

    Get PDF
    Under strong sexual selection, certain species evolve distinct intrasexual, alternative reproductive tactics (ARTs). In many cases, ARTs can be viewed as environmentally-cued threshold traits, such that ARTs coexist if their relative fitness alternates over the environmental cue gradient. Surprisingly, the chemical ecology of ARTs has been underexplored in this context. To our knowledge, no prior study has directly quantified pheromone production for ARTs in a male-polymorphic species. Here, we used the bulb mite—in which males are either armed fighters that kill conspecifics, or unarmed scramblers (which have occasionally been observed to induce mating behavior in other males)—as a model system to gain insight into the role of pheromones in the evolutionary maintenance of ARTs. Given that scramblers forgo investment into weaponry, we tested whether scramblers produce higher quantities of the putative female sex-pheromone α-acaridial than fighters, which would improve the fitness of the scrambler phenotype through female mimicry by allowing avoidance of aggression from competitors. To this end, we sampled mites from a rich and a poor nutritional environment and quantified their production of α-acaridial through gas chromatography analysis.Environmental Biolog

    A combined network model for membrane fouling

    Get PDF
    Membrane fouling during particle filtration occurs through a variety of mechanisms, including internal pore clogging by contaminants, coverage of pore entrances, and deposition on the membrane surface. Each of these fouling mechanisms results in a decline in the observed flow rate over time, and the decrease in filtration efficiency can be characterized by a unique signature formed by plotting the volumetric flux, bQ , as a function of the total volume of fluid processed, bV . When membrane fouling takes place via any one of these mechanisms independently the bQ bV signature is always convex downwards for filtration under a constant transmembrane pressure. However, in many such filtration scenarios, the fouling mechanisms are inherently coupled and the resulting signature is more difficult to interpret. For instance, blocking of a pore entrance will be exacerbated by the internal clogging of a pore, while the deposition of a layer of contaminants is more likely once the pores have been covered by particulates. As a result, the experimentally observed bQ bV signature can vary dramatically from the canonical convex-downwards graph, revealing features that are not captured by existing continuum models. In a range of industrially relevant cases we observe a concave downwards bQ bV signature, indicative of a fouling rate that becomes more severe with time. We derive a network model for membrane fouling that accounts for the inter-relation between fouling mechanisms and demonstrate the impact on the bQ bV signature. Our formulation recovers the behaviour of existing models when the mechanisms are treated independently, but also elucidates the concave-downward bQ bV signature for multiple interactive fouling mechanisms. The resulting model enables post-experiment analysis to identify the dominant fouling modality at each stage, and is able to provide insight into selecting appropriate operating regimes

    Earth system justice needed to identify and live within Earth system boundaries

    Get PDF
    Living within planetary limits requires attention to justice as biophysical boundaries are not inherently just. Through collaboration between natural and social scientists, the Earth Commission defines and operationalizes Earth system justice to ensure that boundaries reduce harm, increase well-being, and reflect substantive and procedural justice. Such stringent boundaries may also affect ‘just access’ to food, water, energy and infrastructure. We show how boundaries may need to be adjusted to reduce harm and increase access, and challenge inequality to ensure a safe and just future for people, other species and the planet. Earth system justice may enable living justly within boundaries

    Search for a strongly decaying neutral charmed pentaquark

    Full text link
    We present a search for a charmed pentaquark decaying strongly to D()pD^{(*)-}p. Finding no evidence for such a state, we set limits on the cross section times branching ratio relative to DD^{*-} and DD^- under particular assumptions about the production mechanism.Comment: To be published in Physics Letters
    corecore