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Abstract

Filters are composed of a complex network of interconnected pores each with tortuous paths. We present a general
network model to describe a filter structure comprising a random network of interconnected pores, relaxing traditional
assumptions made with simplified theoretical models. We use the model to examine the dependence of the filter
performance on both its underlying pore structure (expressed through the pore interconnectivity and porosity gradient)
and the feed composition (expressed through the size of the contaminants). We find that a simple scaling allows the
performance curves over a wide range of the filter material properties to be mapped onto a single master curve. We
also study the link between the tortuosity of a filter and its resulting performance, leading to further self-similarity
observations. When we vary the properties of the feed, however, the performance curves are distinct from one another
and do not collapse onto a single master curve.

Our network model allows us to probe the behaviour of a complex and realistic filter configuration within a frame-
work that is easy to implement and study, enabling accelerated testing and reducing experimental costs in filtration
challenges.
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1. Introduction

Modelling particle filtration through a porous struc-
ture poses a significant challenge due to the random ar-
rangement and interconnectivity of pores. Theoretical
models for filters traditionally make a series of simpli-
fying assumptions that enable a tractable set-up to be
constructed and studied. For instance, this might be pe-
riodicity in the filter construct [1], or a lack of branch-
ing of pores [2, 3]. Such assumptions provide appropri-
ate models for certain filters, for example track-etched
membranes, which comprise approximately uniformly
sized straight-through pores. However, in the major-
ity of filters, pores are assorted in length, orientation
and size, and form complex branching patterns. While
idealistic mathematical frameworks retain the physics
needed to provide much needed explanations for certain
observed behaviour in filter operation (see, for exam-
ple [1, 2], where the nature of the flux decline with time
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is uncovered), it is natural to ask what additional insight
can be gained by studying a more realistic filter set-up.

A step in this direction is taken in [4], for filters com-
posed of a series of obstacles onto which material ad-
heres. A ‘pseudo-randomness’ is introduced by con-
sidering a random arrangement within a suitably large
representative volume and repeating this in space. This
enables a study of the role of randomness to be con-
ducted in the case of fibrous-type filters while retaining
the elements of mathematical simplicity afforded by en-
forcing periodicity in the system. The authors use ho-
mogenization theory to derive upscaled models in which
a cell problem comprising flow through a small num-
ber of randomly arranged obstacles needs to be solved
only once. Some metrics, such as particle diffusivity
are found to be largely unaffected by the relaxation of
a periodic domain, while others, such as removal effi-
ciency, are shown to be dependent on the underpinning
structure. The results demonstrate that, while there is no
universal best filter for a given task, depending on filtra-
tion requirements, either a periodic or a random filter
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may offer superior performance.
In [1] and [3] first steps are taken towards probing

the effect of pore branching, via continuum and discrete
frameworks respectively. In both cases the physical set-
up possesses an underyling periodic structure to facili-
tate the mathematical analysis.

In this paper we construct a fully general framework
for filters comprising pores of arbitrary length and ori-
entation that branch in a general manner. The filters
are constructed by prescribing the number and location
of exposed pores on the upper and lower surfaces and
the junctions in the internal filter structure. The pores
are connected according to prescribed guidelines on the
maximum pore length. The flexibility in the derived net-
work model allows us to probe the effect of pore struc-
ture in a way that models for idealistic filter geometries
cannot.

We centre our study on the effect of tortuosity, one
of the properties that is most easily lost in many of
the idealized set-ups. In a real filter, as particles block
pores, subsequent particles will take paths that become
increasingly convoluted. When operating at a fixed
pressure differential, this effect leads to an undesirable
drop in the flux of processed fluid. On the other hand,
the longer paths that particles must take through the fil-
ter leads to an increase in the chance that a particle is
trapped. This improves the likelihood of a particle be-
ing removed by the filter rather than passing through
uncaptured.

We assess the filter performance by considering how
both the flux and the particle removal efficiency (frac-
tion of particles removed) vary with total volume of
fluid processed (the throughput), and study the connec-
tion between these two metrics and the tortuosity of the
filter. Recognizing that in practice one wishes to max-
imize both the flux and the particle removal efficiency,
we consider the product of these two quantities as a per-
formance metric. In all cases, our performance metric
falls with time, implying that the performance of a filter
degrades with time. We generalize our metric to allow
for scenarios in which different levels of importance are
placed on the flux and particle removal efficiency.

We study the difference in performance of a given fil-
ter when filtering a feed composed of particles of differ-
ent sizes, and the performance of filters with different
pore interconnectivity for a given feed type.

We also use our model to study the effect of poros-
ity gradients in a filter. Filters whose porosity de-
creases with penetration depth have been observed to
improve efficiency and as a result have received atten-
tion [5, 6, 7, 8, 9]. The porosity gradient is chosen
to balance the simultaneous reduction of contaminant

concentration with depth that arises due to prior filter-
ing. Such a set-up has been considered in the context of
a filter comprising a series of obstacles through which
contaminants must traverse (for example, a fibrous fil-
ter) [10, 11]. Here, homogenization theory is general-
ized to incorporate weak deviations from a periodic do-
main. The authors confirm the improved removal effi-
ciency of porosity-graded filters and determine the op-
timal porosity gradient that removes the most contami-
nant before blocking.

Here, we consider the network analogue of such a
porosity-graded filter, where the arrangement of pores is
biased in the filter medium. Furthermore, our model fil-
ter is also able to exhibit a porosity gradient even when
the porosity of the internal pore structure is uniform on
average, by instead including a different density of up-
per and lower pores. This type of porosity gradient is
observed in composite membranes [12], but is less well
studied.

The results of the fully general pore-based network
model derived in this paper are compared with those ob-
tained for obstacle-laden filters considered in [4, 10, 11]
where sensible, while areas in which this model is su-
perior are probed, to add to the current understanding
of the filtration process afforded by current theoretical
models.

2. Model set-up

2.1. Filter construction

We consider a filter composed of a series of pores,
represented as cylindrical pipes. For illustrative pur-
poses we assume these to be of uniform radius in this
paper but note that variability in pore radii is easily in-
corporated. Without loss of generality we can set the
initial pore radius to unity; all subsequent distances are
then measured relative to the pore radius. We consider
a filter occupying the space 0 ≤ x ≤ L, 0 ≤ y ≤ L,
0 ≤ z ≤ H where the planes z = 0, H define the top
and bottom surfaces of the filter respectively (see fig-
ure 1). In all of the results presented here we choose
L = H = 100. We describe the filter pore structure
through the number of pores Ntop exposed on the top
surface (z = 0) and the number of pores Nbottom exposed
on the bottom surface (z = H). The interior pore struc-
ture (0 < z < H) is constructed by assigning a number,
Nint, of points in the 3D interior space, which form the
pore junctions. The location of the top and bottom pores
and junctions are all set randomly. To construct the fil-
ter, each top-surface pore orifice is connected to all junc-
tions beneath that lie within a certain distance, d, which
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Figure 1: (a) 3D pore distribution within a filter, biased towards the
top. Here, the filter is defined by 0 ≤ x ≤ L, 0 ≤ y ≤ L, 0 ≤ z ≤ H,
where the planes z = 0, H define the top and bottom surfaces of the
filter respectively, with L = H = 100. The filter possesses Ntop = 100
surface pores (green dots on z = 0), Nbottom = 100 exit pores (blue
dots on z = H) and Nint = 500 internal pore junctions (red dots).
(b) 2D schematic slice through a cross-section of the filter illustrating
the pore network structure and interconnectivity distance d.

we denote as the interconnectivity distance. Similarly,
internal pore junctions are connected to all surround-
ing junctions that lie within a distance d. This process
continues until junctions are connected to the bottom-
surface pores (see figure 1b). Given the random nature
of distributing the junctions, in some cases surface-pore
orifices may not connect to any junctions, internal junc-
tions may not connect to any junctions, or outlet-pores
may not connect to any junctions. In this case these
pores or junctions are redundant.

The interior points are randomly but not necessarily
uniformly distributed: we allow the filter structures to

possess a biased porosity distribution in the z direction.
We sample the z-locations of the interior points from

a triangular distribution with probability density func-
tion

f (z) =
1
H

(
1 + α

(
z − 1

2 H
))
, 0 < z < H, (1)

where α is a parameter which sets the gradient of the
distribution. Note that we require −2/H ≤ α ≤ 2/H to
ensure that f ≥ 0 for all z. Note also that the distribution
is biased towards z = H when α > 0 and biased towards
z = 0 when α < 0.

Our procedure for computing the z-location of each
point is as follows: for a point with z-location Z we
sample the probability that z ≤ Z (for 0 ≤ z ≤ H) as
a random number from a uniform distribution between
0 and 1, denoted ξ. Hence,

P(z ≤ Z) =

∫ Z

0
f dz = ξ. (2)

For our particular choice of probability density func-
tion, (1), this integral can be evaluated analytically. This
gives rise to a quadratic equation for Z with one root that
lies in 0 ≤ Z ≤ H which provides an explicit formula
for Z as a function of ξ.

This bias in the z-locations of the interior points
means that the overall porosity of the filter will also be
biased in the same way, as more pore connections will
form in regions where these interior points are clustered.
However, it is not possible to control the porosity distri-
bution of the filter directly using this approach.

2.2. Filter operation

In all cases we consider the behaviour of the filter un-
der constant applied transmembrane pressure difference
∆P. The flux q of a fluid with viscosity µ through a sin-
gle cylindrical pore within the filter of length h, radius
r, and pressure difference ∆p across its length is given
by Poiseuille’s law [13]

q =
π∆p r4

8µh
. (3)

As particles adhere to the pore walls, the pore radii and
driving pressure must evolve in time, and so will the flux
through the pores. Denoting the flux through the surface
pores by qi, where 1 ≤ i ≤ Ntop, the total flux through
the filter is given by

Q =

Ntop∑
i=1

qi. (4)
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We define the throughput, V , of the filter to be the total
fluid processed up to a given time, t,

V =

∫ t

0
Q(s) ds. (5)

Without loss of generality, we assume that one parti-
cle is contained in each unit of fluid. In this case, the
throughput is then also conveniently equal to the num-
ber of particles that have entered the filter.

The flux through each pore in the filter structure is
calculated using (3). The fluid pressure on the upper and
lower surface orifices follows from the boundary condi-
tions that enforce the constant transmembrane pressure
difference, ∆P. However, the pressure at each internal
junction must be calculated by imposing that the total
flux into the junction must balance the total flux out in
an analogous fashion to Kirchoff’s law for electrical cir-
cuits.

2.3. Particle deposition
We consider a feed of particles with uniform concen-

tration, and assume that each unit of fluid contains one
particle. In this case, the throughput is also identified as
the total number of particles that have entered the filter
(which may or may not be captured).

As a particle arrives at the filter, the probability pi of
that particle entering a given surface pore, i, is defined
as the ratio of the flux through that pore to the total flux
through the filter:

pi =
qi

Q
. (6)

We consider a monodisperse feed composed of par-
ticles of radius a (relative to the initial pore radius). If
a > 1 then the particles cannot enter the pores and are
filtered out on the surface; if a < 1 the particles are able
to enter into the pores. In our case we are interested in
the internal behaviour of the filter, and so focus our at-
tention on particle feeds with a < 1. We denote pa as
the probability of a particle adhering to the pore walls
per unit length, and assume that this is a constant. The
probability of adhering to the walls of a pore of length `
is then given by

p` = 1 − (1 − pa)`. (7)

In all of the simulations reported below we choose
pa = 0.01. Other, more complex, adhesion laws could
be applied, for example, by assuming the probability
of adhesion within a pore is proportional to the transit
time in that pore. Our model would readily generalize to
cater for such scenarios, but here we choose the simpler
form for illustrative clarity.

If a particle of radius a adheres to a pore of radius
r and height h then we assume that the radius of that
pore is modified to

√
r2 − 4a3/3h. This assumes that the

particle’s volume is distributed uniformly over the inner
surface of that pore, which provides a good approxima-
tion, on average, for the pore constriction process due to
particle deposition. If the particle does not adhere to the
wall it passes through the pore until it reaches the junc-
tion. Once a particle reaches a junction, the subsequent
pore that it enters is decided based on the local fluxes
out of that junction in the probabilistic manner given by
(6). The particle cannot enter pores where the flow is
towards the junction. If a particle selects a pore to enter
whose radius is smaller than the particle then the parti-
cle may not enter the pore and instead the pore entrance
will block. In this case we assume that the pore blocks
completely and no subsequent fluid may pass through
this pore. If a particle makes its way to the bottom layer
(z = H) without adhering to any pore wall it will escape.

The specific flow behaviour within any junction will
be complex. However, this will not affect the ultimate
destination of the particles that we capture in our model
– at worst, the particles may experience a delay to their
journey through the filter while transiting the junctions
– so we do not model the specific junction flow here.

When the particle sticks, the flux through each pore
is recalculated using the same procedure as before. The
entire process of particle arrival, propagation through
the filter, and recalculation of the pressure, flux, and
radii is repeated until the total flux reaches zero and the
filter is completely blocked.

In all of the calculations performed in this paper we
are concerned with fluxes through the filter scaled rela-
tive to the initial flux. In doing so, the pressure differ-
ence ∆P and µ do not feature in the problem.

All graphs generated below are averaged over 100
simulations, with each simulation using a newly gen-
erated filter configuration with the same parameters that
characterize the filter. This ensures that stochastic vari-
ations are suitably smoothed.

3. Quantifying the fouling process

To characterize our filter we introduce the notion of
interconnectivity, tortuosity and particle removal effi-
ciency.

We define the interconnectivity of the filter,

d =
maximum pore length in filter

initial pore radius
. (8)
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We define the tortuosity, τ, as

τ(V) =
average distance travelled by escaping particles

filter thickness, H
.

(9)

The average distance travelled by escaping particles at
throughput V is determined by considering the previ-
ous Nτ particles that have entered the filter and calcu-
lating the average tortuosity of those particles that have
escaped the filter, so that τ(V) is a moving average in V
taken over the interval [V − Nτ,V + Nτ], where we re-
call that the throughput V also corresponds to the total
number of particles that have entered the filter with our
definition of the particle concentration. In all of the sim-
ulations conducted in this paper, we consider Nτ = 500.
Note that this means that whenever we consider the evo-
lution in terms of the throughput we present graphical
results that begin at V = 500.

We define the particle removal efficiency as

E(V) = 1 − fraction of particles that are unfiltered.
(10)

The fraction of unfiltered particles at a given throughput
V is defined as the total number of particles that escape
the filter (out of the NE particles that are inserted into the
filter before that time), divided by NE . As for the tortu-
osity, E(V) is a moving average taken over the interval
[V − NE ,V + NE]. In all of the simulations considered
in this paper we take NE = 500.

In the following sections, we analyse the filter perfor-
mance by considering the variation in the flux Q, parti-
cle removal efficiency E and tortuosity τ as the filtration
process progresses. We make comparisons between the
3D model and the periodic filter arrangement consid-
ered in [1, 2] as well as exploring the additional predic-
tions that this model can make, most notably, the effect
of tortuosity.

We begin in §4 by assessing the relationship be-
tweeen tortuosity, porosity distribution and interconnec-
tivity distance that emerges from the network construc-
tion we have chosen. In §5 we show how we may use
our membrane characterization to extract other physi-
cal membrane properties. We then move on to consider
the filtration performance. First we analyse the depen-
dence of the performance on the material properties of
the filter used, quantified through the interconnectivity
distance, d, in §6, and the bias in porosity in §7, imple-
mented either through the internal porosity gradient, α,
or through a difference between the number of top and
bottom surface pores, Ntop and Nbottom. We then explore
the performance of the filter when subjected to different

feed types, characterized through the contaminant parti-
cle size, in §8. Finally, in §9 we draw conclusions on the
implications of our results and the potential application
of the framework for the filtration industry.

4. Tortuosity relationship

There is a complex link between the tortuosity of a
membrane and its porosity, pore interconnectivity and
pore distribution. Relations have been proposed based
on phenomenological laws and the results of numeri-
cal simulations in porous media, which link the tortu-
osity to porosity. The simplest of these stems from the
Carman–Kozeny law, based on a simple capillary model
for a porous medium, which predicts a relationship of
the form τ = φ3/2 where φ is the porosity [14]. We
can extract a relationship for our more complex ran-
dom porous network between the tortuosity τ and: the
interconnectivity distance d; concentration of internal
pore junctions, Nint (which is a measure of the poros-
ity through equation (2)); concentration of the surface
pores, Ntop and Nbottom; and the porosity bias. Naively,
one might anticipate that the tortuosity associated with
a filter would decrease with increasing filter intercon-
nectivity, as more direct routes become available. In
our case, however, while the tortuosity does indeed de-
crease with increasing interconnectivity distance d for
low values of d, we find that as d increases further the
tortuosity rises again (figure 2a, blue curve).

We can gain insight into the non-monotonic depen-
dence of tortuosity on d by comparing our model with
that of a deterministic process, whereby particles always
choose to enter the pore with the greatest flux. While
this model is not expected to portray an accurate rep-
resentation of real filter behaviour, it is instructive to
consider, as in this case we find that the tortuosity does
indeed monotonically decrease with increasing connec-
tivity, tending towards 1, indicating that a straight path
is taken as the interconnectivity distance becomes large
(figure 2a, red curve).

This allows us to conclude that the non-monotonic
dependence of tortuosity on interconnectivity distance
is a direct result of the stochasticity of the system.
Specifically, in our model, upon arrival at a junction,
a particle chooses the next pore to enter with a bias to-
wards those with larger flux but does not always choose
the pore with the highest flux. As the number of
junctions increases, the difference between the fluxes
through each pore becomes less prominent. This has the
combined result that the probability of a particle taking
a route that is not the most direct increases as the num-
ber of possible paths that are available increases.
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Figure 2: Tortuosity, τ versus (a) interconnectivity distance d, (b)
number of internal pore junctions Nint and (c) the number of top or
bottom pores, Ntop or Nbottom. The blue curve shows the result for
the stochastic model in which particles choose a probabilistic path
that is biased by the flux through each pore at each junction. The red
curve shows the result for a deterministic model in which the parti-
cles choose the path that corresponds to the highest flux, as given by
equation (6). The tortuosity is determined by generating 30 different
random filter configurations with the prescribed material parameters
and calculating the tortuosity of the path taken by 200 different parti-
cles, choosing an initial pore location based on the flux for each filter
configuration. The error bars show one standard deviation in the tor-
tuosity measurements. In (a) we consider a filter with Nint = 500,
Ntop = Nbottom = 100; in (b) we choose d = 30, Ntop = Nbottom = 100;
and in (c) we choose d = 30 and Nint = 500 and either Ntop = 100 or
Nbottom = 100.

Although in this paper we shall use only the more
realistic stochastic model, it is illuminating to consider
the deterministic model to demonstrate show the effect
that stochastic behaviour has on the fundamental system
properties.

We observe a similar non-monotonic relationship be-
tween the tortuosity and the number of internal pore
junctions, Nint (figure 2b, blue curve). Again this is at-
tributed to the stochastic nature of the particle paths,
which is confirmed by comparing with the determin-
istic model for which a monotonic relationship exists
(figure 2b, red curve). While the tortuosity exhibits
a non-monotonic relationship on interconnectivity dis-
tance and number of internal pore junctions, its rela-
tionship to the number of pores on either the top or bot-
tom of the filter is monotonic (figure 2c). We note that
the relationship is the same regardless of whether we
choose to vary Ntop or Nbottom as the initial tortuosity is
independent of the orientation of the filter. For similar
reasons, we find that the tortuosity is unaffected by the
bias in pore location. We will find below, however, that
the filter bias, introduced either by a mismatch in Ntop
and Nbottom or by a bias in the location of internal pore
junctions will play a significant role in how the tortuos-
ity varies with time as the filter blocks.

5. Relationship with physical properties

In practice one might envision being presented with a
membrane in the form of tomographic data. From such
data, one could extract the network properties by which
we choose to define a membrane, namely through (1)
and the parameters α, Nint, Ntop, Nbottom and d (see, [15],
for example).

However, a natural question to ask is, how can we re-
late our choice of filter characterization to other phys-
ical properties, such as the porosity distribution φ(z),
the porosity gradient, dφ/dz and internal surface area
of pores, S ? In figure 3(a) we present the resulting
porosity distribution, φ(z), for a given membrane char-
acterization. As expected, the porosity gradient is ap-
proximately constant in the interior, and this gradient
is linearly proportional to the parameter α in (1) (fig-
ure 3b). However, we are also able to capture the change
in porosity near the top and bottom surfaces that results
from our choice of characterization, through Ntop and
Nbottom (figure 3a).

The internal pore surface area, S , and porosity φ, both
increase with interconnectivity distance, d, in a nonlin-
ear way, with a power of approximately 3.9 in both cases
(figure 4a,b). As a result, the parametric surface-area–
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porosity plot achieved by varying the interconnectivity
distance is approximately linear (figure 4c).

While a membrane may be characterized via a mul-
titude of physical properties, the parameterization we
choose here provides the clearest way to characterize
a filter that possesses a porosity gradient and different
surface porosities.
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Figure 3: (a) Variation of porosity, φ, with filter depth, z, for a filter
structure with a porosity gradient defined by (1). Here, Nint = 500,
Ntop = Nbottom = 100, d = 21, and α = −2/H,−1/H, 0, 1/H, 2/H,
with H = 100. (b) Relationship between internal porosity gradient, G,
defined as the mean porosity gradient over the region z ∈ [10, 90], and
the parameter α in (1).

6. Influence of interconnectivity

We begin our assessment of the behaviour of the 3D
filters by analysing their performance as we vary the fil-
ter properties. We first consider the interconnectivity,
quantified through the interconnectivity distance d. We
consider a filter with an unbiased porosity distribution
(α = 0, Ntop = Nbottom = 100, Nint = 500) with particle
size a = 0.9.
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Figure 4: (a) Variation of mean porosity, φ, with interconnectivity dis-
tance, d, with Nint = 500, Ntop = Nbottom = 100 and α = 0. (b) Vari-
ation of internal pore surface area, S , with interconnectivity distance,
d, with Nint = 500, Ntop = Nbottom = 100 and α = 0. (c) Parametric
representation of the variation of internal pore surface area, S , with
porosity, φ, achieved by varying interconnectivity distance, d, with
Nint = 500, Ntop = Nbottom = 100 and α = 0. In all cases, we av-
erage over the internal domain z ∈ [30, 70] to avoid the effect of the
boundary layers observed in figure 3(a).

The flux–throughput graph is concave down (fig-
ure 5a), which is a result of the simultaneous internal
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Figure 5: (a) Normalized flux, Q, versus throughput, V , for a filter
with an unbiased pore distribution (α = 0, Ntop = Nbottom = 100
and Nint = 500) and interconnectivity distance d = 18 (red dotted),
21 (blue dashed) and 24 (black solid), with particle size a=0.9. When
plotted versus the scaled throughput, V/Vfinal, the curves collapse onto
a single master plot. (b) Log–log plot of final throughput, Vfinal ver-
sus interconnectivity, d. The blue dashed line shows the linear fit
log10(Vfinal) = 5.5 log10(d) − 3.2.

fouling and complete blocking that takes place. This
feature is discussed in more detail in [2] for a mem-
brane comprising straight-through pores with no pore
interconnectivity, as exhibited by track-etched mem-
branes. The increase in the number of paths permissible
through the filter offered by a higher interconnectivity
expresses itself through a slower decline in the flux with
throughput (figure 5a). The relationship between the fi-
nal throughput at blocking, Vfinal, and interconnectivity
distance, d, is seen to obey a power law, of the approxi-
mate form Vfinal ∝ d5.5 (figure 5b), though we acknowl-
edge that this is only for the limited parameter range of
d that we considered here. Plotting Q versus V/Vfinal we

find that the curves all collapse onto a single master plot
(though we do not show this here). This indicates self-
similarity of the system behaviour. This observation is
especially noteworthy since it was found that for filters
with regularly arranged pores the Q–V behaviour of a
filter with no interconnectivity does not collapse onto
the curves generated from a filter with interconnectivity
between adjacent pores when scaled with final through-
put [1]. This emphasizes the ability of the Q–V curve
to expose properties in the underlying filter microstruc-
ture, as was found in [2].

As mentioned in the Introduction, this network model
unlocks the potential to explore the way in which the
tortuosity of paths taken by particles changes during the
filtration process, and thus whether this property may be
related to the overall filtration performance, and so we
now turn our attention to this.

As the flux declines, we observe a concurrent rise in
the tortuosity (figure 6a). This increase in tortuosity cor-
responds directly to an increase in the average distance
a particle must travel before it passes out of the filter, as
particles that have previously adhered to the pore walls
obstruct the paths. The final tortuosity when the filter
blocks completely also rises with increasing pore inter-
connectivity, but perhaps more interestingly, so does the
initial tortuosity taken before fouling initiates. This in-
dicates that, even in the absence of particle fouling, the
randomness attributed to a particle path results in more
convoluted paths being taken from the outset.

The increase in tortuosity will naturally lead to a
greater chance of a particle being captured due to its
increased exposure to the pore walls onto which it may
adhere. This leads us to the natural question of how
the particle removal efficiency, defined in (10), changes
as the filtration process evolves. As anticipated, the re-
moval efficiency of a filter will rise with throughput as
a result of the increase in tortuosity (figure 6b).

Unlike the Q–V curves plotted in figure 5(a), nei-
ther the tortuosity nor removal efficiency curves in fig-
ures 6(a) or (b) collapse onto a single curve when scaled
with the final throughput. However, when examining
the relationship between removal efficiency and tortuos-
ity we find this is independent of pore interconnectivity,
with all curves lying on a single master curve (with vari-
ations among the curves lying within those expected due
to stochastic variations) (figure 6c). Naively, one might
expect this relationship between removal efficiency and
tortuosity to be of the form of equation (7) with ` re-
placed with τ, that is

E = 1 − pτ = (1 − pa)τ, (11)

since on average the particles are travelling a distance τ
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Figure 6: Performance of a filter with an unbiased pore distribution
(α = 0, Ntop = Nbottom = 100 and Nint = 500) and interconnectivity
distance d = 18 (red dotted), 21 (blue dashed) and 24 (black solid),
with particle size a=0.9. The performance is assessed by considering
(a) Tortuosity, τ, versus throughput, V; (b) Particle removal efficiency,
E, versus throughput, V; and (c) Particle removal efficiency, E, versus
tortuosity, τ.

through the filter. However, this is not true. Since there
is a spread of particle paths around this mean travel dis-
tance and the probability of adhering to the walls is a
nonlinear function of travel distance, this skews the re-
lationships so that the the mean particle removal effi-
ciency is not simply related to the mean travel distance.

Thus, given the separation of behaviour when we plot
the removal efficiency or tortuosity separately in terms
of the throughput, and the nonlinear adhesion relation-
ship, the collapse of this data is noteworthy and perhaps
unexpected. This indicates that, regardless of whether
the increase in interconnectivity is achieved through
fabrication methods or as a result of paths being blocked
by particle adhesion, the associated improvements in re-
moval efficiency of a filter will be the same.

In practice, in a given filtration challenge one often
wishes to maximize particle removal efficiency while
also maintaining a large flux. Given the observed rise
in efficiency and simultaneous fall in flux with through-
put this provokes an optimization question of when a
filter is performing at its ‘best’. To attempt to answer
this question, we consider the combined performance
metric, M, defined as

M(V) = E(V) · Q(V). (12)

By studying figures 5(a) and 6(b) alone it is not im-
mediately obvious how M will vary with throughput,
and in particular whether it will be monotonic or pos-
sess an extremum during the filtration process. How-
ever, upon plotting this quantity, we discover that, in
each case, M remains monotonically decreasing, indi-
cating that the performance metric is always maximized
initially (figure 7a). The performance metric is also
seen to increase with increasing interconnectivity. Scal-
ing M with its initial value and plotting versus V/Vfinal
collapses all the curves onto a single master plot, in a
similar manner to the Q–V curves. This demonstrates
that the self-similarity in the filter interconnectivity is a
property of both the Q–V relationship and the filtration
efficiency metric.

Although the metric presented in (12) provides a
mechanism for estimating the overall performance of
the filter through a single parameter, one might imag-
ine scenarios in which the particle removal efficiency is
prized more highly than the flux. In this case, a gen-
eralized metric Mβ = EβQ would be a more appropri-
ate quantity of interest, where β measures the relative
importance of removal efficiency to flux in the filtra-
tion challenge. The behaviour remains monotonic for
order-one values for β, indicating that the performance
is always best initially (figure 7b). When β is increased
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Figure 7: (a) The performance metric M = EQ versus throughput
V for a filter with interconnectivity distance d = 18 (red dotted), 21
(blue dashed), and 24 (black solid). When the performance metric
scaled with its initial value is plotted versus the scaled throughput,
V/Vfinal, each curve collapses onto a single master plot. (b) Mβ = EβQ
versus throughput V with β = 0.1, 0.5, 1, 2, 3 and d = 24. In both
figures, we consider a filter with an unbiased pore distribution (α = 0,
Ntop = Nbottom = 100 and Nint = 500), with particle size a = 0.9.

sufficiently, non-monotonic behaviour is eventually ob-
served for β & 20, corresponding to an optimal perfor-
mance at an intermediate point in the filtration process.
However, at this point the value of M is rather low and
so the stochastic variations become important. (We do
not show these curves here.) Large values of β corre-
spond to prizing particle removal efficiency much more
highly than flux, which would apply in situations where
contaminant removal is vital, such as in virus removal.

7. Influence of porosity bias

We continue our assessment of filtration performance
on the filter properties, now turning our attention to
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Figure 8: (a) Normalized flux, Q versus throughput V , for a filter with
zero bias α = 0 (red dotted), a bias towards the bottom α = 0.01
(blue dashed) and a bias towards the top α = −0.01 (black solid), with
Ntop = Nbottom = 100, Nint = 500, an interconnectivity distance d =

18 and particle size a=0.9. (b) Final throughput, Vfinal versus porosity
gradient, α. When plotted versus the scaled throughput, V/Vfinal, each
curve collapses onto a single master plot.

study the influence of the porosity distribution. As dis-
cussed in the Introduction, a porosity bias can be imple-
mented within our framework in two ways. The sim-
plest way is by varying the porosity gradient in the in-
ternal structure, through the parameter α that appears in
(1). This type of porosity gradient has been considered
in [10, 11] in the context of filters comprising obsta-
cles onto which contaminants adhere, which describes,
for example, fibrous filters; our work here provides the
porous-network analogue of this. The second route to
obtaining a porosity gradient is by introducing a differ-
ence between Ntop and Nbottom. This set-up may apply to
composite filters that comprise membrane layers with

10



different porosities, which are used in gas separation,
nanofiltration and reverse osmosis [12]. In this section
we explore the influence of both types of porosity bias.

7.1. Internal porosity gradients
We begin by studying the effect of internal porosity

gradients by varying the parameter α in the probability
density function (1). In this case, the Q–V curves in
figure 8(a) show that the flux decline is minimized for
filters where more pores are placed towards the top of
the filter. This is in accord with the observations made
for fibrous filters [10, 11]. In a similar manner to the
Q–V curves obtained when varying interconnectivity,
we also observe self-similarity when we plot the Q–V
curves with respect to the scaled throughput V/Vfinal.

In figure 8(b) we plot the variation of final throughput
with respect to how strongly biased the filter is, repre-
sented through the porosity gradient α. We find that a
higher throughput is achieved by filters with more pores
distributed towards the top portion of the filter interior.
The reason for this observation is that pores located fur-
ther into the depth of the filter will see fewer particles
as many will have already been removed by the upper
pores. Allowing for a greater number of pores in the
upper part of the filter will lead to a more uniform dis-
tribution of particles in the pores when the filter finally
blocks. However, continuing to increase the bias in the
porosity towards the top of the filter will lead to insuf-
ficient pores in the lower layer to accept the arriving
particles and the filter will block sooner. This gives
rise to a non-monotonic dependence of throughput on α.
A similar observation was made for a non-woven filter
medium [10, 11]. We find an optimal porosity gradient
described by α = αopt ≈ −0.04 in (1).

The tortuosity at any given throughput increases with
increasing bias towards the top of the filter, as well
as the maximum (final) tortuosity that can be attained
(figure 9a). Likewise, the particle removal efficiency
improves as the pores are biased towards the top (fig-
ure 9b).

As in the case where we varied the interconnectivity
distance, we find that, although both the tortuosity and
removal efficiency vary with bias, variations in the bias
are not expressed through the relationship between re-
moval efficiency and tortuosity (figure 9c).

The initial removal efficiency of each filter is seen to
be unaffected by the bias (recall that the initial removal
efficiency varies with interconnectivity distance, as seen
in figure 7a). This shows that the removal efficiency de-
pends on the mean porosity of the filter (which we hold
constant in each case by definition of our porosity func-
tion (1)) (figure 9c). The superior performance of a fil-
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Figure 9: Performance of a filter with zero bias α = 0 (red dotted),
a bias towards the bottom α = 0.01 (blue dashed) and a bias towards
the top α = −0.01 (black solid), with Ntop = Nbottom = 100, Nint =

500, an interconnectivity distance d = 18 and particle size a=0.9.
The performance is assessed by considering (a) Tortuosity, τ, versus
throughput, V; (b) Particle removal efficiency, E, versus throughput,
V; and (c) Particle removal efficiency, E, versus tortuosity, τ.
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Figure 10: The performance metric M = EQ versus throughput V for
a filter with zero bias α = 0 (red dotted), a bias towards the bottom
α = 0.01 (blue dashed) and a bias towards the top α = −0.01 (black
solid), with Ntop = Nbottom = 100 and Nint = 500, an interconnectivity
distance d = 18, and particle size a = 0.9. When plotted versus the
scaled throughput, V/Vfinal, each curve collapses onto a single master
plot.

ter whose pores are biased towards the top is, however,
evident as time progresses (figure 10). When the per-
formance metric M is plotted versus scaled throughput,
V/Vfinal, all curves collapse onto a single master plot.

7.2. Top and bottom porosity differences

We now turn our attention to achieving a bias in the
porosity by considering a difference between the top and
bottom surface porosities, Ntop and Nbottom. The surface
layers mimic composite filters that are composed of a
thin ‘skin’ layer and an underlying porous support struc-
ture [12].

We study the effect of varying the top surface poros-
ity relative to the bottom surface porosity while we hold
the mean porosity constant (i.e., Ntop + Nbottom is held
fixed). In this case, we find that the Q–V curves are
largely insensitive to differences in Ntop − Nbottom over
a wide range (indicated by the plateau in figure 11b).
Thus, unlike in the case of an internal bias, there is not a
clear optimum porosity difference between the top and
bottom surfaces. If this difference is increased by a suit-
able amount either in the positive or negative sense then
the throughput eventually falls as a result of either too
few top surface pores or too few bottom surface pores
(figure 11a). Plotting the flux versus the scaled through-
put V/Vfinal again leads to a collapse to a master plot.

When considering the evolution of the tortuosity we
find similarly that the behaviour is the same over a broad
range of values for Ntop −Nbottom. If Ntop −Nbottom is too
negative, so that the number of pores on the top is too

low, then the tortuosity starts off lower than that when
Ntop and Nbottom are similar to each other, but eventually
crosses over at some point, and takes larger values there-
after. When Ntop − Nbottom is large and positive, so that
the number of pores on the bottom is too low, the tortu-
osity is always lower than that when Ntop and Nbottom are
similar to each other (figure 12a). A similar behaviour
is observed for the removal efficiency (figure 12b). As
in previous examples, the removal efficiency versus tor-
tuosity curves are all approximately the same, though a
small distinction can now be made (figure 12c).

The curves for performance metric M are improved to
begin with when Ntop−Nbottom is either large and positive
or large and negative but cross over at some point with
the curve for the case when Ntop and Nbottom are similar
(figure 13).
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Figure 11: (a) Normalized flux, Q versus throughput V , a filter with
a bias towards the bottom Ntop − Nbottom = −150 (red dotted), zero
bias Ntop − Nbottom = 0 (blue dashed) and bias towards the top Ntop −

Nbottom = 180 (black solid) while (Ntop + Nbottom)/2 = 100, with α =

0, Nint = 500, an interconnectivity distance d = 18 and particle size
a=0.9. (b) Final throughput, Vfinal, versus Ntop − Nbottom.
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Figure 12: Performance of a filter with a bias towards the bottom,
Ntop −Nbottom = −150 (red dotted), zero bias, Ntop −Nbottom = 0 (blue
dashed) and bias towards the top Ntop − Nbottom = 180 (black solid)
with (Ntop + Nbottom)/2 = 100, α = 0, Nint = 500, an interconnectivity
distance d = 18 and particle size a=0.9. The performance is assessed
by considering (a) Tortuosity, τ, versus throughput, V; (b) Particle
removal efficiency, E, versus throughput, V; and (c) Particle removal
efficiency, E, versus tortuosity, τ.
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Figure 13: The performance metric M = EQ versus throughput V
for a bias towards the bottom, Ntop − Nbottom = −150 (red dotted),
zero bias, Ntop − Nbottom = 0 (blue dashed) and bias towards the top
Ntop − Nbottom = 180 (black solid) with (Ntop + Nbottom)/2 = 100,
α = 0, Nint = 500, an interconnectivity distance d = 18 and , with
α = 0, an interconnectivity distance d = 18, and particle size a = 0.9.

8. Influence of particle size

Having assessed the performance of a given filter
given its physical properties we conclude by exploring
the filter performance when subjected to different feeds,
by varying the size of the particles being filtered. We
use a filter with no porosity bias (α = 0 in (1)), and
set Ntop = Nbottom = 100, Nint = 500 and an intercon-
nectivity distance d = 18. We restrict our attention to
monodisperse feeds and vary the particle size, a < 1
so that particles are able to enter the pores and internal
fouling occurs. As noted in §2.3, when a > 1 all parti-
cles are sieved at the surface of the filter, which is not of
interest here. We keep the probability of adhering to the
pore wall, pa = 0.01 in all cases.

As the particle size increases the blocking process is
accelerated, as expected (figure 14a). A feature that has
been present in all of the analysis conducted so far is
that when the filter properties were adjusted the Q–V
curves exhibited self-similarity when plotted versus the
scaled throughput V/Vfinal. Performing the same pro-
cess for the curves in figure 14(a) however no longer
leads to a collapse onto a single master plot. Thus the
self-similarity that was present when material properties
of the filter were varied does not extend to variations in
the feed. We attribute this to different blocking mech-
anisms at play: larger particles lead to pores blocking
completely more quickly, so that a greater proportion of
pores are no longer accessible sooner.

The tortuosity and particle removal efficiency both
rise more sharply with increasing particle size (fig-
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Figure 14: (a) Normalized flux, Q versus throughput V , an unbiased
pore distribution (α = 0, Ntop = Nbottom = 100 and Nint = 500) and in-
terconnectivity distance d = 18, with particle size a=0.7 (red dotted),
a=0.8 (blue dashed) and a=0.9 (black solid). (b) Final throughput,
Vfinal versus particle size, a.

ure 15a,b). The relationship between removal efficiency
and tortuosity exposes a dependence on particle size
(figure 15c). This is in contrast to the results obtained
for variations in the material properties of the filter,
which did not present themselves in the relationship be-
tween removal efficiency and tortuosity.

The performance metric M reduces with increasing
particle size (figure 16). In a similar manner to the Q–
V curves, the dependence of the performance metric on
scaled throughput, V/Vfinal also does not reduce to a sin-
gle master curve, unlike all previous studies for varia-
tions in material properties of the filter.

9. Conclusions

We have presented a fully general framework to de-
scribe the evolution in the performance of a filter dur-
ing the filtration process. The framework models fil-
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Figure 15: Performance of a filter with an unbiased pore distribution
(α = 0, Ntop = Nbottom = 100 and Nint = 500) and interconnec-
tivity distance d = 18, with particle size a=0.7 (red dotted), a=0.8
(blue dashed) and a=0.9 (black solid). The performance is assessed
by considering (a) Tortuosity, τ, versus throughput, V; (b) Particle re-
moval efficiency, E, versus throughput, V; and (c) Particle removal
efficiency, E, versus tortuosity, τ.
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Figure 16: (a) The performance metric M = EQ versus throughput V
for a filter with an unbiased pore distribution (α = 0, Ntop = Nbottom =

100 and Nint = 500), interconnectivity distance d = 18, and particle
size a=0.7 (red dotted), a=0.8 (blue dashed) and a=0.9 (black solid).

ter structures comprising a fully random network of in-
terconnected pores, the more traditional simplifying as-
sumptions on periodicity in the filter geometry that en-
able a model to be more tractable.

The network model outlined here provides a fully
generalized version of the simpler frameworks outlined
in [1, 2], and makes a step towards encapsulating the
full complexity of a filter within a framework that is
easy to implement and study. The model allowed us
to perform a comprehensive study of the performance
of a filter on both the filter structure (expressed through
the pore interconnectivity and porosity gradient) and the
feed composition (expressed through the size of the con-
taminants).

The flexibility in the model allowed us to extract sim-
ple scaling laws from this complex underpinning net-
work structure. In particular, we found that a univer-
sal self-similarity was expressed in the flux–throughput
curves upon variations in the filter structure when scaled
with the final throughput. In contrast, when we turned
our attention to studying the impact of variations in the
feed properties, which we explored by varying the parti-
cle size, we found that this self-similarity was no longer
present. In particular, the flux–throughput curves no
longer collapsed onto a single master curve.

The most notable advantage of this model is its abil-
ity to link the notion of tortuosity to a filter’s perfor-
mance. In doing so we were able to uncover further self-
similarity, in the relationship between particle removal
efficiency and tortuosity, a result that was not easily an-
ticipated by studying the evolution of these properties
during filtration. We found that the removal-efficiency–

tortuosity relationship was unaffected by changes in the
material property of the filter, but did exhibit a depen-
dence on the particle size in the feed.

Our network model allows us to probe the behaviour
of a complex and realistic filter configuration in a simple
and tractable manner. We expect that the model can be
used in real-life scenarios, to enable accelerated testing
of various filter challenges, as well as reduce the number
of costly experiments that are traditionally required to
ensure that a filtration unit is operating in the desired
manner.
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