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Condition-dependent expression of alternative male

morphologies (AMMs) exists in many arthropods.

Understanding their coexistence requires answering (at least)

two questions: (i) what are the ecological selection pressures

that maintain condition-dependent plasticity of AMM

expression, and (ii) what maintains the associated genetic

variation? Focusing on acarid mites, we show that the

questions should not be conflated. We argue how, instead,

answers should be sought by testing phenotype-level (question

1) or genotype-level (question 2) hypotheses. We illustrate that

energy allocation restrictions and physiological trade-offs are

likely to play a crucial role in AMM expression in acarid mites.

We thus conclude that these aspects require specific attention

in identifying selection pressures maintaining condition-

dependent plasticity, and evolutionary processes that maintain

genetic variation in condition-dependent phenotypic plasticity.
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Introduction
Male secondary sexual traits are often differently

expressed depending on nutrition during development

[1]. In many arthropods, such condition-dependent

plasticity leads to male dimorphism [2–4], with ensuing

within-population male morph coexistence having

evolved multiple times. Understanding the

evolutionary causes of male dimorphism represents

an outstanding question in evolutionary biology, with

direct relevance to the broader fundamental challenge
Current Opinion in Insect Science 2019, 36:66–73 
of explaining the maintenance of variation in the face of

Darwinian selection.

Arthropod male dimorphisms generally comprise minors

and majors [5–8, but see Ref. 9�]. Often, majors are large

and possess morphological structures that are used as

weapons in male-male competition, while minors are

smaller, lack (large) weapons and adopt a sneaker strategy

to gain access to females. Whether a male develops into

an armed major male or an unarmed minor male depends

on whether it reaches a critical resource or body size

threshold during development. For example, in many

horned dung beetles (Coleoptera: Scarabaeidae), large

male larvae develop into horned majors (fighters) that

guard tunnel entrances containing a breeding hornless

female, whereas smaller male larvae develop into hornless

minors (sneakers) that find females by tunneling past the

guarding fighters [10]. In acarid mites, large male juve-

niles develop into majors (fighters) which have an

enlarged and modified third leg pair with sharp tarsal

claws that they use to kill competitors, whereas smaller

male juveniles develop into defenseless minors (scram-

blers) with unmodified legs (Figure 1a) [4].

Critical resource or body size thresholds underlying alter-

native male morph (AMM) expression can evolve rapidly

in response to artificial selection (acarid mites [11–13]) or

after introduction to novel environments (dung beetles

[14]; earwigs [15]; acarid mites [11]). This raises two

questions. Firstly, what ecological selection pressures

maintain condition-dependent plasticity and set the

threshold for AMM expression? Secondly, since

rapid evolutionary responses suggest considerable thresh-

old heritability, what maintains genetic variation

associated with condition-dependent plasticity? Here,

we illustrate how explanations for each question should

be sought at either the phenotype or genotype level.

Studies, however, often conflate the levels, or make

unjustified inferences on how the two levels are linked.

Focusing on the acarid mite model system, where a

number of species show condition-dependent AMM

expression depending on juvenile nutrition and somatic

growth (Table 1), we review different hypotheses that can

be employed to tackle each question. Our goal is to

illustrate how a conceptual distinction between two levels

of explanation (phenotype and genotype) will yield

explanatory power to understand the evolution and
www.sciencedirect.com
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Figure 1
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Conceptual diagram showing how, exemplified for the male dimorphism in acarid mites (a), answers to the two questions tackled in this review

require explanations at different levels. (b) The first question — what are the ecological selection pressures that maintain condition-dependent

plasticity and that set the threshold for AMM expression — can be tested using two, non-mutually exclusive hypotheses. Information-based

hypotheses state that an individual develops fighter legs or not (grey block) cued by current condition (e.g. body size) as a predictor for future

performance in the mating environment (grey arrow). The developmental switch is therefore an anticipatory mechanism allowing different

behavioural mating tactics. Somatic state-based hypotheses state that individual condition may or may not prevent individuals from developing

fighter legs, as investment in fighter legs would cause lasting harm if undertaken under bad condition. The developmental switch is therefore a

stress-mitigating mechanism allowing maturation under adverse circumstances [27��]. Black solid arrows denote processes occurring in

developmental time; dashed arrows denote relationships that hold over evolutionary time. (c) The second question — what maintains genetic

variation associated with condition-dependent plasticity in AMMs — can be tested using two hypotheses. The weak selection hypothesis states

www.sciencedirect.com Current Opinion in Insect Science 2019, 36:66–73
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Table 1

Mite species in which males plastically develop as fighters or as scramblers. Excluded are species within the genera Cheyletus and

Schwiebia where male morphologies have been described, but no further life history information exists (e.g. Refs. [16,17])

Species Fighter morphology Condition-dependent male

morph expression

Other cues for male

morph expression

Crossing fitness

functions

Falculifer rostratus Elongated first and

second legs,

and elongated lower

cheliceral digits

Yes (exploitation

competition) [18]

Not known Not known

Rhizoglyphus echinopus Thickened, muscular

third legs (Figure 1a)

Yes (juvenile diet

and temperature) [19];

No (juvenile diet) [19]

Population density [20];

colony size [19,20]

In relation to

colony size [20]

Rhizoglyphus robini Thickened, muscular

third legs (Figure 1a)

Yes (juvenile diet) [21,23] Not population density [21] Not known [22]

Sancassania anomalus Thickened, muscular

third legs (Figure 1a)

Yes (juvenile dietand

temperature) [24]

Population density [24] Not known

Sancassania berlesei Thickened, muscular

third legs (Figure 1a)

Yes (juvenile diet [21];

body weight [25])

Colony size [25] In relation to

male density [26�]
maintenance of condition-dependent AMM expression.

Definitions and concepts of important terms used

throughout the review are presented in Box 1.

Selection pressures that favor condition-
dependent plasticity in AMM expression
In general, two non-mutually exclusive hypotheses exist

to explain adaptive condition-dependent developmental

plasticity [27��]. Using acarid mites as a model, bad-

condition males maximize fitness by developing

unmodified legs and expressing the scrambler morph,

whereas good-condition males maximize fitness by devel-

oping fighter legs and expressing the fighter morph

(assuming expression is adaptive). This results in a cross-

ing of scrambler and fighter fitness functions over the

condition gradient. Although conceptually similar, the

two hypotheses differ in what this condition gradient

is, and why the fitness functions cross.

According to the alternative mating tactics hypothesis, condi-

tion relates to future performance with regards to mating,

where male aggression and physical strength determine

mating success. Good-condition males are relatively likely

to win future contests over access to mates, and thus benefit

most by expressing the fighter morph. Bad-condition males

are relatively unlikely to win future fights, and benefit by

expressing the scrambler morph, which is adapted for

sneaking tactics to gain access to mates without engaging

in fights [27��] (Figure 1b).

In acarid mites, the evolution of condition-dependent

AMM expression is often assumed to be driven by the

alternative mating tactics mechanism [4], but without
(Figure 1 Legend Continued) that selection near the threshold where the f

cross, is weak because in the associated region of condition, fitness differe

balancing selection hypothesis states that genetic variation in the AMM thre

intralocus sexual conflict (illustrated here). Under intralocus sexual conflict, 

allocation trade-off in males and females (black line) but different fitness op
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strong empirical support. Firstly, there is little evidence

that fighters and scramblers occupy different condition-

dependent mating niches, in which fighters monopolize

females by fighting and scramblers employ sneaking

tactics to obtain matings [22,37]. Fighters and scramblers

also perform similarly in sperm competition [38],

although under some conditions, food-deprived scram-

blers produce more offspring than food-deprived fighters

[39]. Fighters can kill conspecifics, possibly to remove

competitors [40], but equally plausible is that they do so

to feed on conspecifics [41]. Secondly, it is unclear that an

individual’s juvenile body size predicts its performance as

an adult. For example, there is currently no evidence that

fighting or sneaking success scale with body size in acarid

mites [22].

According to the somatic buffering hypothesis (Figure 1b),

fitness functions of scramblers and fighters cross over the

condition gradient because it is physiologically too expen-

sive for bad-condition males to sustain prioritized physi-

ological processes, such as somatic maintenance and

development, and also produce fighter morphology. Such

bad-condition males can salvage somatic functioning by

refraining from developing fighter morphology, redirect-

ing resources to prioritized processes.

Consistent with the somatic buffering hypothesis in aca-

rid mites, a resource allocation trade-off between fighter

leg development and other somatic functions is implied

via (i) fighter leg development happening at the same

time as when adults molt into the adult stage in a closed

developmental system, and (ii) observations that fighter

males shrink during maturation, whereas scrambler males
itness functions of scramblers (dashed line) and fighters (solid line)

nces between the male morphs are small (dashed region). The

shold is the result of opposing selection pressures, for example, due to

such opposing selection pressures are the consequence of a shared

tima for males and females (white circles).

www.sciencedirect.com
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Box 1 Glossary

Alternative mating tactic hypothesis: an information-based hypothesis for adaptive condition-dependent developmental plasticity. It assumes

that AMM expression depends on an observable cue at the moment of morph determination (e.g. body size), which provides information on

expected future mating performance given an individual’s condition [27��]. According to the alternative mating tactic hypothesis, AMM expression

is a predictive adaptive response to early cues for mating performance.

Balancing selection: the phenomenon that selection maintains multiple alleles at particular loci within a population. Balancing selection can be

caused by many processes, such as heterozygote advantage, frequency dependence, intralocus sexual conflict or fluctuating environments

[28,29].

Canalization: the propensity for development to produce the same phenotype regardless of environmental or genetic variation [30].

Frequency dependent selection: when the fitness of a phenotype or genotype varies depending on its relative abundance within a population

[31].

Genic capture hypothesis: posits that, given condition-dependence of costly sexually selected traits, considerable genetic variance in them can

be maintained because condition depends on many genes affecting resource acquisition and processing [32].

Genotype-to-phenotype map: this concept goes beyond a 1:1 genotype-to-phenotype association, whereby the genotype is only one of several

causal factors that jointly affect the phenotype. Importantly, this concept takes into account developmental parameter space [33].

Heterozygote advantage: the phenomenon that individuals with heterozygote genotypes have higher fitness than homozygous individuals within a

population [28].

Inbreeding depression: reduction in fitness of offspring derived from related individuals, due to largely recessive, deleterious mutations present in

low frequencies within populations [33].

Information-based hypotheses for adaptive plasticity: a class of hypotheses that explain adaptive plasticity by assuming an information link

between adult performance and environmental cues perceived by developing juveniles. Under information-based explanations for adaptive

plasticity, trait expression in developing juveniles depends on whether they perceive cues that predict particular adult environments.

Intralocus sexual conflict: sexually antagonistic selection where male adaptation is detrimental to female fitness because the male trait is

genetically correlated with the female trait and males and females have different fitness optima. It results in at least one of the sexes not reaching

their fitness optimum, and in balancing selection on the genes underlying the male and female traits [34].

Phenotypic plasticity: the phenomenon that phenotype expression depends on environmental effects, given a particular genetic background [35].

Single Nucleotide Polymorphism (SNP): a single nucleotide variant that occurs at a specific position in the genome.

Somatic buffering hypothesis: a somatic-state-based hypothesis for adaptive condition-dependent developmental plasticity. It assumes that

bad (poor) somatic condition directly threatens somatic functioning, which is then mitigated by an immediate adaptive developmental response

with irreversible consequences for the adult phenotype as a by-product (e.g. stopping allocation to secondary sexual character traits). Under this

hypothesis there is no informational link between expected future performance and AMM expression, and AMM expression is not an adaptive

anticipatory response to future conditions [27��].

Somatic state-based hypotheses for adaptive plasticity: a class of hypotheses that explain adaptive plasticity by assuming a direct, causal link

between an irreversible environmental perturbation of development and an immediate developmental response that mitigates the negative

consequences of the perturbation. Under somatic-state-based mechanisms for adaptive plasticity, differential phenotype expression is not an

anticipatory response to a future environment, but a consequence of adaptively coping with environmental perturbations.

Weak selection: an explanation for genetic variation, in which selection is not strong enough to purge weakly deleterious alleles that are

introduced by mutation or migration [36].
do not [22,25]. However, it is unknown whether males

with small resource budgets are particularly negatively

affected by this trade-off and therefore refrain from

developing fighter legs. To support the somatic buffering

hypothesis, one also has to confirm that bad condition at

maturation cannot be adaptively mitigated by postponing

maturation and acquiring more resources [27��]. Particu-

larly in growing populations, delayed maturation has a

fitness cost [42,43]. However, it remains to be shown

whether this delay will be more detrimental to male

fitness than the possible compensatory benefits of

weapons.

Empirically distinguishing between the two hypotheses is

not straightforward. Whereas the alternative mating tac-

tics hypothesis predicts that the AMM expression thresh-

old is evolutionarily regulated by how adult males
www.sciencedirect.com 
perform, the somatic buffering hypothesis predicts that

the threshold is regulated by the dynamics of population

density, food competition and individual energy econo-

mies. Both mechanisms can act in concert, and it is not

easy to predict which of the two will have a stronger effect

on AMM threshold evolution. Through experimental

evolution, Smallegange and Deere [12] followed food-

restricted Rhizoglyphus robini populations while simulta-

neously harvesting either scramblers or fighters, allowing

population density to respond to the harvesting treat-

ments. Males evolved towards unconditional scrambler
expression regardless of which morph was harvested.

The evolutionary shift towards the scrambler phenotype

was accompanied by an increase in average population

density, likely from an overcompensatory response to

average competition pressure, a decrease in per-capita

resource uptake, and an increase in the relative costs of
Current Opinion in Insect Science 2019, 36:66–73
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producing expensive fighter legs. When repeated under

ad lib food conditions (reducing population density

effects), Smallegange et al. [40] still found a modest

overcompensatory population reaction but with no

AMM expression evolutionary response to the harvesting

treatments. Both experiments show that variation in

population density and internal energy economies during

development may be more important evolutionary drivers

of condition-dependent adaptive AMM expression than

adult male performance.

Processes that maintain genetic variation in
condition-dependent AMM expression
Condition-dependent AMM expression evolves rapidly

in response to artificial selection in acarid mites [11,12],

and assuming the current threshold is optimal, we should

expect selection to remove any associated genetic varia-

tion. Despite this, AMM expression is generally heritable,

although heritability measures vary widely depending on

population or study [13,44,45]. These heritabilities could

reflect heritability of the AMM threshold (but also con-

dition). However, threshold heritability is difficult to

measure [46,47], as it is unknown what the true proximate

cue triggering AMM expression is [8,48]. Therefore,

reported heritabilities are hard to interpret [8,48]. How-

ever, rapid evolutionary responses of the AMM threshold

to novel selection pressures imply that genetic variation

underlying the AMM threshold must be substantial [13].

Such genetic variation can be explained if selection on the

threshold is actually not particularly strong, or if balancing

selection maintains genetic polymorphisms. Both hypoth-

eses have merit. Costly sexually selected male traits (e.g.

fighter legs) are predicted to capture genetic variance

(genic capture), as trait exaggeration inevitably increases

the dependency on the resource budget and genes that

contribute to resource acquisition, assimilation and allo-

cation [32]. Genic capture enforces mechanisms that

increase heritability of sexually selected male traits, by

increasing the target for mutation or balancing selection.

Genetic variation in thresholds may simply be maintained

under weak selection. Condition-dependent threshold

traits that evolve through crossing fitness functions have

an interesting property: selection acts mainly on pheno-

type expression at the extremes of condition [49]. Con-

sequently, selection near the threshold is expected to be

much weaker than far away from the threshold

(Figure 1c). It may be the case that selection on the

threshold is too weak to purge mutations, particularly

because a relatively large proportion of the population is

expected to express a value of somatic condition that is

near the threshold.

The alternative hypothesis is that genetic variation is

under balancing selection (Figure 1c), including pro-

cesses such as heterozygote advantage (which is possible

in these acarid mites as their sex determining
Current Opinion in Insect Science 2019, 36:66–73 
mechanism is an X0 type) or fluctuating environments,

neither of which have currently been empirically tested.

Frequency dependence is another possibility, but to

date, there is no evidentiary support in acarid mites

[37,45]. Two more plausible processes of balancing

selection include differential inbreeding depression or

intralocus sexual conflict.

To show that intralocus sexual conflict is maintaining

genetic diversity in genes underlying male morph expres-

sion requires the following demonstrations [34]. Firstly,

male and female traits should be associated with the same

genes [50], which may naturally occur if development of

both male and female traits is physiologically expensive

and subject to allocation trade-offs. Male and female

adaptation are then associated with resource economies

that bias resources towards respectively male and female

trait development. If the genetic underpinning of

the resource budget is the same in males and females,

male and female traits can be envisaged to be on a single

resource allocation trade-off with a single set of associated

genes (Figure 1c). Secondly, given the existence of such a

trade-off, males and females should have fitness optima

on different positions on this trade-off (Figure 1c).

Thirdly, neither sex should currently be at their fitness

optimum, fueling sexually antagonistic selection where

male adaptation is detrimental to female fitness and vice

versa. In acarid mites, currently, only the requirement

that male fighter leg development and female fecundity

are associated with the same genes has received some

empirical support [13,51]. However, candidate genes for

this pleiotropic effect have not been conclusively identi-

fied (but see Ref. [52]), and the presumed resource

allocation trade-offs underpinning this genetic correlation

have not yet been demonstrated. Therefore, we should

not discard the alternative explanation that correlated

phenotypic responses between sexes are driven by dif-

ferential inbreeding depression.

Stewart et al. [53�] suggest balancing selection maintains

genetic variation in R. robini through differential

inbreeding depression between AMMs and sexes, with

patterns (and intensities) fluctuating among environ-

ments. Notably, this research encompassed individual-

level genetic diversity profiles that demonstrated that

scramblers were more diverse than their highly inbred

fighter counterparts, but that this differentiation

decreased up to threefold in bad-nutrition environ-

ments. The severity of inbreeding depression may thus

fluctuate with nutritional environment and with male

phenotype, potentially resulting in balancing selection

on alleles involved in various physiological processes.

However, strong evidence for this hypothesis is lacking.

Stewart et al.’s [53�] results may also be explained by

differential inbreeding among male morphs and a col-

lapse of AMM heritability in bad environments (i.e.

gene-by-environment interactions).
www.sciencedirect.com
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In either case, the next-steps for understanding processes

involved in the maintenance of genetic variation under-

lying condition-dependent plasticity would be increased

diversity measures through genome-wide sequencing,

including outlier analysis and gene discovery (e.g.

genome-wide SNP analysis) [54�]. By pinpointing the

genetic basis and causal mechanisms of intraspecific

condition-dependent variation within populations, such

as AMM expression, researchers may identify the physi-

ological processes and trade-offs involved in its develop-

ment. This will not only contribute to understanding the

potential roles of intralocus sexual conflict and differen-

tial inbreeding depression in maintaining genetic varia-

tion, but may also support somatic-state based selection

pressures (e.g. somatic buffering) as drivers of condition-

dependent AMM expression. In the acarid mite system,

we envisage genetic evidence for somatic state mecha-

nisms to comprise genes implicated in metabolic or other

physiological processes involved in structural growth and

somatic maintenance [52]. Finally, a developmental-

causal understanding of AMM expression in acarid mites,

combined with pedigreed populations, will allow us to

more accurately measure how much genetic variation in

AMM thresholds we actually have to explain.

Implications and future directions
We find that only the alternative mating tactics hypoth-

esis has been considered in acarid mites with regards to

ecological selection pressures that maintain condition-

dependent plasticity and set AMM thresholds, yet strong

empirical evidence is lacking. The somatic buffering

hypothesis provides a promising alternative explanation

if condition-dependent AMM expression is a somatic

state-based mitigating response, rather than an informa-

tion-based anticipatory response. This hypothesis shifts

the emphasis away from adult-centrism, in which juve-

nile condition is just a predictor of future mating perfor-

mance and AMM expression is an anticipatory adaptive

response with genetic variation as a boundary condition,

to a life-cycle perspective, in which the physiological

processes underlying maintenance and development

take center stage (Figure 1b) [55��,56]. It thus moves

the focus of evolutionary explanation from the external

and contingent, to the internal and inherent [55��].

Balancing selection seems the most promising avenue to

maintain genetic variation underlying AMM expression

within mite populations. While adopting a population-

genetic view to explain genetic variation is important to fully

appreciate howAMMs can be evolutionarily stable, implicitly

assuming a simple one-on-one genotype-to-phenotype link-

age is fraught with misinterpretations [13]. In acarid mites,

AMM expression depends on somatic condition. Condition,

in turn, is largely environmentally determined, which renders

AMM expression a case of developmental plasticity. This

implies that the question of why genetic variation underlying

condition-dependent thresholds is maintained, is at a
www.sciencedirect.com 
different level of explanation than the question of why

development is condition-dependent instead of canalized

(Figure 1). At one level of explanation, we seek to answer

why heritability is maintained in the face of selection, while at

the other, we seek to answer why AMMs coexist.

Finally, condition-dependent AMM expression in some

acarid mite species has been co-opted by an additional

mechanism, and cued by colony size (Table 1). This may

suggest that once a condition-dependent developmental

switch has evolved, it is evolutionarily liable to be trig-

gered by other cues that produce adaptive results. For

example, in the soil mite Sancassania berlesei, AMM

expression is cued by both somatic condition and chemi-

cal cues for population density [27��], the latter of which

appears to be adaptive [26�]. Investigating the causes and

consequences of evolutionary shifts in AMM cues could

reveal whether somatic state-based mechanisms of AMM

expression that mitigate immediate threats to physiolog-

ical functioning are an evolutionary precursor of informa-

tion-based AMM expression where future conditions are

anticipated via information cues. Given that AMM

expression in acarid mites can be cued by condition

(either somatic state-based or information-based) and/or

colony size (information-based) (Table 1), we foresee the

acarid mite model system to be at the forefront in tackling

such investigations.

In conclusion, to understand drivers of condition-dependent

AMM expression, we call for a research agenda that derives

testable somatic buffering hypotheses from mechanistic

approaches based on underlying physiological principles

[e.g. Refs. 57–59]. This, in turn, would not only underpin

approaches asking what maintains the underlying genetic

variation, but also allow for accurate prediction of population

dynamics in the face of environmental change, as the

dynamics of individual life histories [e.g. Refs. 60,61]

ultimately form the basis for the dynamics of populations

as a whole.
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