503 research outputs found

    SMA outflow/disk studies in the massive star-forming region IRAS18089-1732

    Full text link
    SMA observations of the massive star-forming region IRAS 18089-1732 in the 1mm and 850mu band reveal outflow and disk signatures in different molecular lines. The SiO(5--4) data show a collimated outflow in the northern direction. In contrast, the HCOOCH3(20--19) line, which traces high-density gas, is confined to the very center of the region and shows a velocity gradient across the core. The HCOOCH3 velocity gradient is not exactly perpendicular to the outflow axis but between an assumed disk plane and the outflow axis. We interpret these HCOOCH3 features as originating from a rotating disk that is influenced by the outflow and infall. Based on the (sub-)mm continuum emission, the mass of the central core is estimated to be around 38M_sun. The dynamical mass derived from the HCOOCH3 data is 22Msun, of about the same order as the core mass. Thus, the mass of the protostar/disk/envelope system is dominated by its disk and envelope. The two frequency continuum data of the core indicate a low dust opacity index beta ~ 1.2 in the outer part, decreasing to beta ~ 0.5 on shorter spatial scales.Comment: 7 pages of text, 1 table, 3 figures, accepted for ApJ Letter

    Submillimeter Array multiline observations of the massive star-forming region IRAS 18089-1732

    Full text link
    Submillimeter Array (SMA) observations of the high-mass star-forming region IRAS 18089-1732 in the 1 mm and 850 μ\mum band with 1 GHz bandwidth reveal a wealth of information. We present the observations of 34 lines from 16 different molecular species. Most molecular line maps show significant contributions from the outflow, and only few molecules are confined to the inner core. We present and discuss the molecular line observations and outline the unique capabilities of the SMA for future imaging line surveys at high spatial resolution.Comment: Accepted for ApJ Letters, SMA special volum

    High Velocity Molecular Outflows In Massive Cluster Forming Region G10.6-0.4

    Full text link
    We report the arcsecond resolution SMA observations of the 12^{12}CO (2-1) transition in the massive cluster forming region G10.6-0.4. In these observations, the high velocity 12^{12}CO emission is resolved into individual outflow systems, which have a typical size scale of a few arcseconds. These molecular outflows are energetic, and are interacting with the ambient molecular gas. By inspecting the shock signatures traced by CH3_{3}OH, SiO, and HCN emissions, we suggest that abundant star formation activities are distributed over the entire 0.5 pc scale dense molecular envelope. The star formation efficiency over one global free-fall timescale (of the 0.5 pc molecular envelope, 105\sim10^{5} years) is about a few percent. The total energy feedback of these high velocity outflows is higher than 1047^{47} erg, which is comparable to the total kinetic energy in the rotational motion of the dense molecular envelope. From order-of-magnitude estimations, we suggest that the energy injected from the protostellar outflows is capable of balancing the turbulent energy dissipation. No high velocity bipolar molecular outflow associated with the central OB cluster is directly detected, which can be due to the photo-ionization.Comment: 42 pages, 14 figures, accepted by Ap

    High Resolution CO Observations of Massive Star Forming Regions

    Full text link
    Context. To further understand the processes involved in the formation of massive stars, we have undertaken a study of the gas dynamics surrounding three massive star forming regions. By observing the large scale structures at high resolution, we are able to determine properties such as driving source, and spatially resolve the bulk dynamical properties of the gas such as infall and outflow. Aims. With high resolution observations, we are able to determine which of the cores in a cluster forming massive stars is responsible for the large scale structures. Methods. We present CO observations of three massive star forming regions with known HII regions and show how the CO traces both infall and outflow. By combining data taken in two SMA configurations with JCMT observations, we are able to see large scale structures at high resolution. Results. We find large (0.26-0.40 pc), massive (2-3 M_sun) and energetic (13-17 \times 10^44 erg) outflows emanating from the edges of two HII regions suggesting they are being powered by the protostar(s) within. We find infall signatures in two of our sources with mass infall rates of order 10-4 M_sun/yr. Conclusions. We suggest that star formation is ongoing in these sources despite the presence of HII regions. We further conclude that the source(s) within a single HII region are responsible for the observed large scale structures; that these large structures are not the net effect of multiple outflows from multiple HII regions and hot cores.Comment: 8 pages,2 figures, accepted for publication in A&

    The Origin of OB Clusters: From 10 pc to 0.1 pc

    Full text link
    We observe the 1.2 mm continuum emission around the OB cluster forming region G10.6-0.4, using the IRAM 30m telescope MAMBO-2 bolometer array and the Submillimeter array. Comparison of the Spitzer 24 μ\mum and 8 μ\mum images with our 1.2 mm continuum maps reveals the ionization front of an HII region, the photon-dominated layer, and several 5 pc scale filaments following the outer edge of the photon-dominated layer. The filaments, which are resolved in the MAMBO-2 observations, show regularly spaced parsec-scale molecular clumps, embedded with a cluster of submillimeter molecular cores as shown in the SMA 0.87 mm observations. Toward the center of the G10.6-0.4 region, the combined SMA+IRAM 30m continuum image reveals several, parsec-scale protrusions. They may continue down to within 0.1 pc of the geometric center of a dense 3 pc size structure, where a 200 M_{\odot} OB cluster resides. The observed filaments may facilitate mass accretion onto the central cluster--forming region in the presence of strong radiative and mechanical stellar feedbacks. Their filamentary geometry may also facilitate fragmentation. We did not detect any significant polarized emission at 0.87 mm in the inner 1 pc region with the SMA.Comment: 32 pages, 10 figures, Accepted by ApJ on 2011.October

    Infall of gas as the formation mechanism of stars up to 20 times more massive than the Sun

    Get PDF
    Theory predicts and observations confirm that low-mass stars (like the Sun) in their early life grow by accreting gas from the surrounding material. But for stars ~ 10 times more massive than the Sun (~10 M_sun), the powerful stellar radiation is expected to inhibit accretion and thus limit the growth of their mass. Clearly, stars with masses >10 M_sun exist, so there must be a way for them to form. The problem may be solved by non-spherical accretion, which allows some of the stellar photons to escape along the symmetry axis where the density is lower. The recent detection of rotating disks and toroids around very young massive stars has lent support to the idea that high-mass (> 8 M_sun) stars could form in this way. Here we report observations of an ammonia line towards a high-mass star forming region. We conclude from the data that the gas is falling inwards towards a very young star of ~20 M_sun, in line with theoretical predictions of non-spherical accretion.Comment: 11 pages, 2 figure

    Interstellar OH+, H2O+ and H3O+ along the sight-line to G10.6-0.4

    Full text link
    We report the detection of absorption lines by the reactive ions OH+, H2O+ and H3O+ along the line of sight to the submillimeter continuum source G10.6-0.4 (W31C). We used the Herschel HIFI instrument in dual beam switch mode to observe the ground state rotational transitions of OH+ at 971 GHz, H2O+ at 1115 and 607 GHz, and H3O+ at 984 GHz. The resultant spectra show deep absorption over a broad velocity range that originates in the interstellar matter along the line of sight to G10.6-0.4 as well as in the molecular gas directly associated with that source. The OH+ spectrum reaches saturation over most velocities corresponding to the foreground gas, while the opacity of the H2O+ lines remains lower than 1 in the same velocity range, and the H3O+ line shows only weak absorption. For LSR velocities between 7 and 50 kms1^{-1} we estimate total column densities of NN(OH+) >2.5×1014> 2.5 \times 10^{14} cm2^{-2}, NN(H2O+) 6×1013\sim 6 \times 10^{13} cm2^{-2} and NN(H3O+) 4.0×1013\sim 4.0 \times 10^{13} cm2^{-2}. These detections confirm the role of O+^+ and OH+^+ in initiating the oxygen chemistry in diffuse molecular gas and strengthen our understanding of the gas phase production of water. The high ratio of the OH+ by the H2O+ column density implies that these species predominantly trace low-density gas with a small fraction of hydrogen in molecular form

    The Molecular Accretion Flow in G10.6-0.4

    Full text link
    We have observed the ultracompact HII region G10.6-0.4 with the VLA in 23 GHz continuum and the NH3(3,3) inversion line. By analyzing the optical depth of the line as well as the kinematics, we have detected a flattened, rotating, molecular accretion flow. We detect the fact that the highest column density gas is more flattened, that is, distributed more narrowly, than the lower column density gas, and that there is some inclination of the rotation axis. The rotation is sub-Keplerian, and the molecular gas is not in a rotationally supported disk. We do not find a single massive (proto)star forming in a scaled up version of low mass star formation. Instead, our observations suggest a different mode of clustered massive star formation, in which the accretion flow flattens but does not form an accretion disk. Also in this mode of star formation the central object can be a group of massive stars rather than a single massive star.Comment: 20 pages, 6 figures Accepted for publication in the Astrophysical Journa

    A VLA Study of Ultracompact and Hypercompact H II Regions from 0.7 to 3.6 cm

    Full text link
    We report multi-frequency Very Large Array observations of three massive star formation regions (MSFRs) containing radio continuum components that were identified as broad radio recombination line (RRL) sources and hypercompact (HC) H II region candidates in our previous H92alpha and H76alpha study: G10.96+0.01 (component W), G28.20-0.04 (N), and G34.26+0.15 (B). An additional HC H II region candidate, G45.07+0.13, known to have broad H66alpha and H76alpha lines, small size, high electron density and emission measure, was also included. We observed with high spatial resolution (0.9" to 2.3") the H53alpha, H66alpha, H76alpha, and H92alpha RRLs and the radio continuum at the corresponding wavelengths (0.7 to 3.6 cm). The motivation for these observations was to obtain RRLs over a range of principal quantum states to look for signatures of pressure broadening and macroscopic velocity structure. We find that pressure broadening contributes significantly to the line widths, but it is not the sole cause of the broad lines. We compare radio continuum and dust emission distributions and find a good correspondence. We also discuss maser emission and multi-wavelength observations reported in the literature for these MSFRs.Comment: Accepted for publication in ApJ; 55 pages, 10 tables, 12 figure

    Comparative study of complex N- and O-bearing molecules in hot molecular cores

    Full text link
    We have observed several emission lines of two Nitrogen-bearing (C2H5CN and C2H3CN) and two Oxygen-bearing (CH3OCH3 and HCOOCH3) molecules towards a sample of well-known hot molecular cores (HMCs) in order to check whether the chemical differentiation seen in the Orion-HMC and W3(H_2O) between O- and N-bearing molecules is a general property of HMCs. With the IRAM-30m telescope we have observed 12 HMCs in 21 bands, centered at frequencies from 86250 to 258280 MHz. The rotational temperatures obtained range from ~100 to ~150 K in these HMCs. Single Gaussian fits performed to unblended lines show a marginal difference in the line peak velocities of the C2H5CN and CH3OCH3 lines, indicating a possible spatial separation between the region traced by the two molecules. On the other hand, neither the linewidths nor the rotational temperatures and column densities confirm such a result. By comparing the abundance ratio of the pair C2H5CN/C2H3CN with the predictions of theoretical models, we derive that the age of our cores ranges between 3.7 and 5.9x10^{4} yrs. The abundances of C2H5CN and C2H3CN are strongly correlated, as expected from theory which predicts that C2H3CN is formed through gas phase reactions involving C2H5CN. A correlation is also found between the abundances of C2H3CN and CH3OCH3, and C2H5CN and CH3OCH3. In all tracers the fractional abundances increase with the H_2 column density while they are not correlated with the gas temperature.Comment: Accepted for publication in A&A, 56 page
    corecore