100 research outputs found

    Extensive necrosis of visceral melanoma metastases after immunotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prognosis for metastatic melanoma remains poor even with traditional decarbazine or interferon therapy. 5-year survival is markedly higher amongst patients undergoing metastatectomy. Unfortunately not all are suitable for metastatectomy. Alternative agents for systemic therapy have, to date, offered no greater rates of survival beyond traditional therapy. A toll-like receptor 9 agonist, PF-3512676 (formerly known as CPG 7909) is currently being evaluated for its potential.</p> <p>Case presentation</p> <p>We present the case of a 54-year-old Caucasian male with completely resected metastatic cutaneous melanoma after immunotherapy. The patient initially progressed during adjuvant high-dose interferon, with metastases to the liver, spleen, and pelvic lymph nodes. During an 18-month treatment period with PF-3512676 (formerly known as CPG 7909), a synthetic cytosine-phosphorothioate-guanine rich oligodeoxynucleotide, slow radiologic disease progression was demonstrated at the original disease sites. Subsequent excision of splenic and pelvic nodal metastases was performed, followed by resection of the liver metastases. Histologic examination of both hepatic and splenic melanoma metastases showed extensive necrosis. Subsequent disease-free status was demonstrated by serial positron emission tomography (PET).</p> <p>Conclusion</p> <p>Existing evidence from phase I/II trials suggests systemic treatment with PF-3512676 is capable of provoking a strong tumor-specific immune response and may account for the prolonged tumor control in this instance.</p

    A Context-Specific Role for Retinoblastoma Protein-Dependent Negative Growth Control in Suppressing Mammary Tumorigenesis

    Get PDF
    The ability to respond to anti-growth signals is critical to maintain tissue homeostasis and loss of this negative growth control safeguard is considered a hallmark of cancer. Negative growth regulation generally occurs during the G0/G1 phase of the cell cycle, yet the redundancy and complexity among components of this regulatory network has made it difficult to discern how negative growth cues protect cells from aberrant proliferation.The retinoblastoma protein (pRB) acts as the final barrier to prevent cells from entering into the cell cycle. By introducing subtle changes in the endogenous mouse Rb1 gene (Rb1(ΔL)), we have previously shown that interactions at the LXCXE binding cleft are necessary for the proper response to anti-growth signals such as DNA damage and TGF-ÎČ, with minimal effects on overall development. This disrupts the balance of pro- and anti-growth signals in mammary epithelium of Rb1(ΔL/ΔL) mice. Here we show that Rb1(ΔL/ΔL) mice are more prone to mammary tumors in the Wap-p53(R172H) transgenic background indicating that negative growth regulation is important for tumor suppression in these mice. In contrast, the same defect in anti-growth control has no impact on Neu-induced mammary tumorigenesis.Our work demonstrates that negative growth control by pRB acts as a crucial barrier against oncogenic transformation. Strikingly, our data also reveals that this tumor suppressive effect is context-dependent

    Predicting Positive p53 Cancer Rescue Regions Using Most Informative Positive (MIP) Active Learning

    Get PDF
    Many protein engineering problems involve finding mutations that produce proteins with a particular function. Computational active learning is an attractive approach to discover desired biological activities. Traditional active learning techniques have been optimized to iteratively improve classifier accuracy, not to quickly discover biologically significant results. We report here a novel active learning technique, Most Informative Positive (MIP), which is tailored to biological problems because it seeks novel and informative positive results. MIP active learning differs from traditional active learning methods in two ways: (1) it preferentially seeks Positive (functionally active) examples; and (2) it may be effectively extended to select gene regions suitable for high throughput combinatorial mutagenesis. We applied MIP to discover mutations in the tumor suppressor protein p53 that reactivate mutated p53 found in human cancers. This is an important biomedical goal because p53 mutants have been implicated in half of all human cancers, and restoring active p53 in tumors leads to tumor regression. MIP found Positive (cancer rescue) p53 mutants in silico using 33% fewer experiments than traditional non-MIP active learning, with only a minor decrease in classifier accuracy. Applying MIP to in vivo experimentation yielded immediate Positive results. Ten different p53 mutations found in human cancers were paired in silico with all possible single amino acid rescue mutations, from which MIP was used to select a Positive Region predicted to be enriched for p53 cancer rescue mutants. In vivo assays showed that the predicted Positive Region: (1) had significantly more (p<0.01) new strong cancer rescue mutants than control regions (Negative, and non-MIP active learning); (2) had slightly more new strong cancer rescue mutants than an Expert region selected for purely biological considerations; and (3) rescued for the first time the previously unrescuable p53 cancer mutant P152L

    Senescent cells evade immune clearance via HLA-E-mediated NK and CD8(+) T cell inhibition

    Get PDF
    Senescent cells accumulate in human tissues during ageing and contribute to age-related pathologies. The mechanisms responsible for their accumulation are unclear. Here we show that senescent dermal fibroblasts express the non-classical MHC molecule HLA-E, which interacts with the inhibitory receptor NKG2A expressed by NK and highly differentiated CD8 + T cells to inhibit immune responses against senescent cells. HLA-E expression is induced by senescence-associated secretary phenotype-related pro-inflammatory cytokines, and is regulated by p38 MAP kinase signalling in vitro. Consistently, HLA-E expression is increased on senescent cells in human skin sections from old individuals, when compared with those from young, and in human melanocytic nevi relative to normal skin. Lastly, blocking the interaction between HLA-E and NKG2A boosts immune responses against senescent cells in vitro. We thus propose that increased HLA-E expression contributes to persistence of senescent cells in tissues, thereby suggesting a new strategy for eliminating senescent cells during ageing

    Dual Beneficial Effects of (-)-Epigallocatechin-3-Gallate on Levodopa Methylation and Hippocampal Neurodegeneration: In Vitro and In Vivo Studies

    Get PDF
    A combination of levodopa (L-DOPA) and carbidopa is the most commonly-used treatment for symptom management in Parkinson's disease. Studies have shown that concomitant use of a COMT inhibitor is highly beneficial in controlling the wearing-off phenomenon by improving L-DOPA bioavailability as well as brain entry. The present study sought to determine whether (-)-epigallocatechin-3-gallate (EGCG), a common tea polyphenol, can serve as a naturally-occurring COMT inhibitor that also possesses neuroprotective actions.Using both in vitro and in vivo models, we investigated the modulating effects of EGCG on L-DOPA methylation as well as on chemically induced oxidative neuronal damage and degeneration. EGCG strongly inhibited human liver COMT-mediated O-methylation of L-DOPA in a concentration-dependent manner in vitro, with an average IC50 of 0.36 microM. Oral administration of EGCG moderately lowered the accumulation of 3-O-methyldopa in the plasma and striatum of rats treated with L-DOPA+carbidopa. In addition, EGCG also reduced glutamate-induced oxidative cytotoxicity in cultured HT22 mouse hippocampal neuronal cells through inactivation of the nuclear factor kappaB-signaling pathway. Under in vivo conditions, administration of EGCG exerted a strong protective effect against kainic acid-induced oxidative neuronal death in the hippocampus of rats.These observations suggest that oral administration of EGCG may have significant beneficial effects in Parkinson's patients treated with L-DOPA and carbidopa by exerting a modest inhibition of L-DOPA methylation plus a strong neuroprotection against oxidative damage and degeneration

    Lineage-Specific Restraint of Pituitary Gonadotroph Cell Adenoma Growth

    Get PDF
    Although pituitary adenomas are usually benign, unique trophic mechanisms restraining cell proliferation are unclear. As GH-secreting adenomas are associated with p53/p21-dependent senescence, we tested mechanisms constraining non-functioning pituitary adenoma growth. Thirty six gonadotroph-derived non-functioning pituitary adenomas all exhibited DNA damage, but undetectable p21 expression. However, these adenomas all expressed p16, and >90% abundantly expressed cytoplasmic clusterin associated with induction of the Cdk inhibitor p15 in 70% of gonadotroph and in 26% of somatotroph lineage adenomas (p = 0.006). Murine LÎČT2 and αT3 gonadotroph pituitary cells, and αGSU.PTTG transgenic mice with targeted gonadotroph cell adenomas also abundantly expressed clusterin and exhibited features of oncogene-induced senescence as evidenced by C/EBPÎČ and C/EBPÎŽ induction. In turn, C/EBPs activated the clusterin promoter ∌5 fold, and elevated clusterin subsequently elicited p15 and p16 expression, acting to arrest murine gonadotroph cell proliferation. In contrast, specific clusterin suppression by RNAis enhanced gonadotroph proliferation. FOXL2, a tissue-specific gonadotroph lineage factor, also induced the clusterin promoter ∌3 fold in αT3 pituitary cells. As nine of 12 pituitary carcinomas were devoid of clusterin expression, this protein may limit proliferation of benign adenomatous pituitary cells. These results point to lineage-specific pathways restricting uncontrolled murine and human pituitary gonadotroph adenoma cell growth

    Clinical development of new drug-radiotherapy combinations.

    Get PDF
    In countries with the best cancer outcomes, approximately 60% of patients receive radiotherapy as part of their treatment, which is one of the most cost-effective cancer treatments. Notably, around 40% of cancer cures include the use of radiotherapy, either as a single modality or combined with other treatments. Radiotherapy can provide enormous benefit to patients with cancer. In the past decade, significant technical advances, such as image-guided radiotherapy, intensity-modulated radiotherapy, stereotactic radiotherapy, and proton therapy enable higher doses of radiotherapy to be delivered to the tumour with significantly lower doses to normal surrounding tissues. However, apart from the combination of traditional cytotoxic chemotherapy with radiotherapy, little progress has been made in identifying and defining optimal targeted therapy and radiotherapy combinations to improve the efficacy of cancer treatment. The National Cancer Research Institute Clinical and Translational Radiotherapy Research Working Group (CTRad) formed a Joint Working Group with representatives from academia, industry, patient groups and regulatory bodies to address this lack of progress and to publish recommendations for future clinical research. Herein, we highlight the Working Group's consensus recommendations to increase the number of novel drugs being successfully registered in combination with radiotherapy to improve clinical outcomes for patients with cancer.National Institute for Health ResearchThis is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/nrclinonc.2016.7

    Computational analysis of expression of human embryonic stem cell-associated signatures in tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cancer stem cell model has been proposed based on the linkage between human embryonic stem cells and human cancer cells. However, the evidences supporting the cancer stem cell model remain to be collected. In this study, we extensively examined the expression of human embryonic stem cell-associated signatures including core genes, transcription factors, pathways and microRNAs in various cancers using the computational biology approach.</p> <p>Results</p> <p>We used the class comparison analysis and survival analysis algorithms to identify differentially expressed genes and their associated transcription factors, pathways and microRNAs among normal vs. tumor or good prognosis vs. poor prognosis phenotypes classes based on numerous human cancer gene expression data. We found that most of the human embryonic stem cell- associated signatures were frequently identified in the analysis, suggesting a strong linkage between human embryonic stem cells and cancer cells.</p> <p>Conclusions</p> <p>The present study revealed the close linkage between the human embryonic stem cell associated gene expression profiles and cancer-associated gene expression profiles, and therefore offered an indirect support for the cancer stem cell theory. However, many interest issues remain to be addressed further.</p

    Imaging biomarker roadmap for cancer studies.

    Get PDF
    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    • 

    corecore