99 research outputs found

    Whither Correlated Electron Theory?

    Full text link
    This is the text of the 'Theory' opening talk at the 2001 Strongly Correlated Electron Systems conference. It contains opinions about some of the outstanding scientific challenges facing the theory side of the correlated electrons field.Comment: 7 pages. No figures. To appear in Physica

    Multiband Fitting to Three Long GRBs with Fermi/LAT Data: Structured Ejecta Sweeping up a Density-Jump Medium

    Full text link
    We present broadband (radio, optical, X-ray and GeV) fits to the afterglow light curves and spectra of three long-duration gamma-ray bursts (GRBs 080916C, 090902B, and 090926A) detected by the Gamma-Ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on the Fermi satellite. Using the observed broadband data, we study the origin of the high energy emission, and suggest that the early-time GeV emission and the late-time radio, optical, and X-ray afterglows can be understood as being due to synchrotron emission from an external forward shock caused by structured ejecta propagating in a wind bubble jumping to a homogeneous density medium. If the ceasing time for majority of the energy injection is assumed to be close to the deceleration time of the forward shock, the structured ejecta with continuous energy injection to the forward shock can well explain the early rising feature of the GeV mission from these burst, and the density-jump medium can account for some certain plateaus or flares in the late afterglows. From our fits, we find that, on one hand, the external shock origin of the GeV photons will make the optical depth have not significant contribution to the early LAT rising part, which will loosen strong constraint of lower limits of Lorentz factor. On the other hand, these Fermi-LAT events preferentially occur in a low-density circumburst environment, in which case the Klein-Nishina cutoff will significantly suppress the Self-Synchrotron Compton (SSC) radiation. Such an environment might result from superbubbles or low-metallicity progenitor stars (which have a low mass-loss rate at late times of stellar evolution) of type Ib/c supernovae.Comment: 32 pages, 4 figures, 2 tables; some minor typo corrected, optical depth does not have significant contribution to the result, major conclusions unchange

    Phases of the two-band model of spinless fermions in one dimension

    Full text link
    We study the two-band model of spinless fermions in one dimension for weak repulsive interactions. In this case, the model is equivalent to the weakly interacting spinless two-leg ladder. We obtain analytic expressions for the superconducting pairing correlation function and the charge density correlation function, which show, that a finite interchain hopping t_p results in dominant superconductivity for repulsive interactions (for vanishing t_p, we recover previous results). We furthermore find that the transition from the superconducting phase to the usual one-dimensional (Luttinger) metal at large doping occurs via a mixed phase, where superconducting pairs are formed in the bonding band only. We give the phase diagram as a function of temperature and doping.Comment: 10 pages, 2 figure

    Brain enhancement through cognitive training: A new insight from brain connectome

    Get PDF
    Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners' learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals' cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive function

    Paired opposing leukocyte receptors recognizing rapidly evolving ligands are subject to homogenization of their ligand binding domains

    Get PDF
    Some leukocyte receptors come in groups of two or more where the partners share ligand(s) but transmit opposite signals. Some of the ligands, such as MHC class I, are fast evolving, raising the problem of how paired opposing receptors manage to change in step with respect to ligand binding properties and at the same time conserve opposite signaling functions. An example is the KLRC (NKG2) family, where opposing variants have been conserved in both rodents and primates. Phylogenetic analyses of the KLRC receptors within and between the two orders show that the opposing partners have been subject to post-speciation gene homogenization restricted mainly to the parts of the genes that encode the ligand binding domains. Concerted evolution similarly restricted is demonstrated also for the KLRI, KLRB (NKR-P1), KLRA (Ly49), and PIR receptor families. We propose the term merohomogenization for this phenomenon and discuss its significance for the evolution of immune receptors

    Chicken Pleiotrophin: Regulation of Tissue Specific Expression by Estrogen in the Oviduct and Distinct Expression Pattern in the Ovarian Carcinomas

    Get PDF
    Pleiotrophin (PTN) is a developmentally-regulated growth factor which is widely distributed in various tissues and also detected in many kinds of carcinomas. However, little is known about the PTN gene in chickens. In the present study, we found chicken PTN to be highly conserved with respect to mammalian PTN genes (91–92.6%) and its mRNA was most abundant in brain, heart and oviduct. This study focused on the PTN gene in the oviduct where it was detected in the glandular (GE) and luminal (LE) epithelial cells. Treatment of young chicks with diethylstilbesterol induced PTN mRNA and protein in GE and LE, but not in other cell types of the oviduct. Further, several microRNAs, specifically miR-499 and miR-1709 were discovered to influence PTN expression via its 3′-UTR which suggests that post-transcriptional regulation influences PTN expression in chickens. We also compared expression patterns and CpG methylation status of the PTN gene in normal and cancerous ovaries from chickens. Our results indicated that PTN is most abundant in the GE of adenocarcinoma of cancerous, but not normal ovaries of hens. Bisulfite sequencing revealed that 30- and 40% of −1311 and −1339 CpG sites are demethylated in ovarian cancer cells, respectively. Collectively, these results indicate that chicken PTN is a novel estrogen-induced gene expressed mainly in the oviductal epithelia implicating PTN regulation of oviduct development and egg formation, and also suggest that PTN is a biomarker for epithelial ovarian carcinoma that could be used for diagnosis and monitoring effects of therapies for the disease

    Current perspectives of the signaling pathways directing neural crest induction

    Get PDF
    The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse

    Host response mechanisms in periodontal diseases

    Full text link
    corecore