53 research outputs found

    Anatomic Optical Coherence Tomography (aOCT) for Evaluation of the Internal Nasal Valve

    Get PDF
    Objectives/Hypothesis: To establish the utility of anatomic optical coherence tomography (aOCT) in evaluating internal nasal valve (INV). Study Design: Anatomic specimen imaging study. Methods: Fresh-harvested human specimen heads were evaluated using both computed tomography (CT) imaging as well as using aOCT. Scans were performed at three time points: 1) After septoplasty for cartilage harvest, 2) after placement of butterfly graft (BFG), and 3) after placement of bilateral spreader grafts (SG). Imaging data were then converted into 3D models of the nasal airway. CT- and aOCT-generated models were compared by both static volumetric analysis and computational fluid dynamics (CFD) to predict nasal resistance and pressure. Results: Scans using aOCT showed comparable results to CT in terms of volumetric parameters both before and after intervention. Analysis of aOCT data by CFD demonstrated decrease in pressure after SG or BFG intervention. No statistically significant difference was observed when comparing CT- and aOCT-generated calculations of pressure or resistance. Conclusion: The INV can be imaged in a static fashion using aOCT technology. Advantages over traditional CT imaging include lack of exposure to radiation and rapid scan time. In addition, in-office use is possible as aOCT technology develops. Further investigation will be necessary to define the role of aOCT in the dynamic evaluation of this vital component of the nasal airway. Level of Evidence: III Laryngoscope, 2021

    Utility of endoscopic anatomical optical coherence tomography in functional rhinoplasty

    Get PDF
    Objective measurement of the nasal valve region is valuable for the assessment of functional rhinoplasty surgical outcomes. Anatomical optical coherence tomography (aOCT) is an imaging modality that may be used to obtain real-time, quantitative, and volumetric scans of the nasal airway. We aim to evaluate if volumetric aOCT imaging is useful for the examination of the nasal valve region before and after functional rhinoplasty procedures. aOCT scans of the nasal valves were performed on four cadaveric heads before and after spreader graft and butterfly graft procedures. The resulting aOCT images were compared against video endoscopy images, and the segmented volumes of the nasal airway obtained from aOCT scans were compared with computed tomography (CT) derived volumes acquired under the same conditions. The aOCT-derived volumes match the CT volumes closely, with a mean Dice similarity coefficient of 0.88 and a mean Hausdorff distance of 2.3 mm. Furthermore, the aOCT images were found to represent the shape of the nasal cavity accurately. Due to its ability to perform real-time, quantitative, and accurate evaluation of the nasal airway, aOCT imaging is a promising modality for the objective assessment of the nasal valves before and after functional rhinoplasty procedures

    Melting as a String-Mediated Phase Transition

    Full text link
    We present a theory of the melting of elemental solids as a dislocation-mediated phase transition. We model dislocations near melt as non-interacting closed strings on a lattice. In this framework we derive simple expressions for the melting temperature and latent heat of fusion that depend on the dislocation density at melt. We use experimental data for more than half the elements in the Periodic Table to determine the dislocation density from both relations. Melting temperatures yield a dislocation density of (0.61\pm 0.20) b^{-2}, in good agreement with the density obtained from latent heats, (0.66\pm 0.11) b^{-2}, where b is the length of the smallest perfect-dislocation Burgers vector. Melting corresponds to the situation where, on average, half of the atoms are within a dislocation core.Comment: 18 pages, LaTeX, 3 eps figures, to appear in Phys. Rev.

    Theory of inelastic lifetimes of low-energy electrons in metals

    Full text link
    Electron dynamics in the bulk and at the surface of solid materials are well known to play a key role in a variety of physical and chemical phenomena. In this article we describe the main aspects of the interaction of low-energy electrons with solids, and report extensive calculations of inelastic lifetimes of both low-energy electrons in bulk materials and image-potential states at metal surfaces. New calculations of inelastic lifetimes in a homogeneous electron gas are presented, by using various well-known representations of the electronic response of the medium. Band-structure calculations, which have been recently carried out by the authors and collaborators, are reviewed, and future work is addressed.Comment: 28 pages, 18 figures, to appear in Chem. Phy

    Silicon and Germanium Nanostructures for Photovoltaic Applications: Ab-Initio Results

    Get PDF
    Actually, most of the electric energy is being produced by fossil fuels and great is the search for viable alternatives. The most appealing and promising technology is photovoltaics. It will become truly mainstream when its cost will be comparable to other energy sources. One way is to significantly enhance device efficiencies, for example by increasing the number of band gaps in multijunction solar cells or by favoring charge separation in the devices. This can be done by using cells based on nanostructured semiconductors. In this paper, we will present ab-initio results of the structural, electronic and optical properties of (1) silicon and germanium nanoparticles embedded in wide band gap materials and (2) mixed silicon-germanium nanowires. We show that theory can help in understanding the microscopic processes important for devices performances. In particular, we calculated for embedded Si and Ge nanoparticles the dependence of the absorption threshold on size and oxidation, the role of crystallinity and, in some cases, the recombination rates, and we demonstrated that in the case of mixed nanowires, those with a clear interface between Si and Ge show not only a reduced quantum confinement effect but display also a natural geometrical separation between electron and hole

    How will regulation influence commercial viability of autonomous equipment in US production agriculture?

    No full text
    Autonomous equipment for crop production is on the brink of commercialization in the United States but federal, state, and local policies could affect commercial viability and hinder adoption. This article examines the farm-level implications of both a speed restriction and on-site supervisory regulations. The rules reduce the profitability of autonomous machinery, and for some scenarios autonomous machines are no longer an economically viable alternative to conventional machinery. Regulations also increase the optimal number autonomous machines required and influence production practices. Smaller farms have more flexibility in supporting the rules because they have more to gain from the use of autonomous equipment
    • …
    corecore