250 research outputs found

    Genome-wide transcriptomic analysis of the response to nitrogen limitation in Streptomyces coelicolor A3(2)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study represents a genome-wide transcriptomic analysis of the response of the model streptomycete <it>Streptomyces coelicolor </it>A3(2) M145 to fermentor culture in Modified Evans Media limited, respectively, for nitrogen, phosphate and carbon undertaken as part of the ActinoGEN consortium to provide a publicly available reference microarray dataset.</p> <p>Findings</p> <p>A microarray dataset using samples from two replicate cultures for each nutrient limitation was generated. In this report our analysis has focused on the genes which are significantly differentially expressed, as determined by Rank Products Analysis, between samples from matched time points correlated by growth phase for the three pairs of differently limited culture datasets. With a few exceptions, genes are only significantly differentially expressed between the N6/N7 time points and their corresponding time points in the C and P-limited cultures, with the vast majority of the differentially expressed genes being more highly expressed in the N-limited cultures. Our analysis of these genes indicated expression of several members of the GlnR regulon are induced upon nitrogen limitation, as assayed for by [NH<sub>4</sub><sup>+</sup>] measurements, and we are able to identify several additional genes not present in the GlnR regulon whose expression is induced in response to nitrogen limitation. We also note SCO3327 which encodes a small protein (32 amino acid residues) unusually rich in the basic amino acids lysine (31.25%) and arginine (25%) is significantly differentially expressed in the nitrogen limited cultures. Additionally, we investigate the expression of known members of the GlnR regulon and the relationship between gene organization and expression for the SCO2486-SCO2487 and SCO5583-SCO5585 operons.</p> <p>Conclusions</p> <p>We provide a list of genes whose expression is differentially expressed in low nitrogen culture conditions, including a putative nitrogen storage protein encoded by SCO3327. Our list includes several genes whose expression patterns are similar to up-regulated members of the GlnR regulon and are induced in response to nitrogen limitation. These genes represent likely targets for future studies into the nitrogen starvation response in <it>Streptomyces coelicolor</it>.</p

    The Genetic Interpretation of Area under the ROC Curve in Genomic Profiling

    Get PDF
    Genome-wide association studies in human populations have facilitated the creation of genomic profiles which combine the effects of many associated genetic variants to predict risk of disease. The area under the receiver operator characteristic (ROC) curve is a well established measure for determining the efficacy of tests in correctly classifying diseased and non-diseased individuals. We use quantitative genetics theory to provide insight into the genetic interpretation of the area under the ROC curve (AUC) when the test classifier is a predictor of genetic risk. Even when the proportion of genetic variance explained by the test is 100%, there is a maximum value for AUC that depends on the genetic epidemiology of the disease, i.e. either the sibling recurrence risk or heritability and disease prevalence. We derive an equation relating maximum AUC to heritability and disease prevalence. The expression can be reversed to calculate the proportion of genetic variance explained given AUC, disease prevalence, and heritability. We use published estimates of disease prevalence and sibling recurrence risk for 17 complex genetic diseases to calculate the proportion of genetic variance that a test must explain to achieve AUC = 0.75; this varied from 0.10 to 0.74. We provide a genetic interpretation of AUC for use with predictors of genetic risk based on genomic profiles. We provide a strategy to estimate proportion of genetic variance explained on the liability scale from estimates of AUC, disease prevalence, and heritability (or sibling recurrence risk) available as an online calculator

    Nutritional and Metabolic Requirements for the Infection of HeLa Cells by Salmonella enterica Serovar Typhimurium

    Get PDF
    Salmonella is the causative agent of a spectrum of human and animal diseases ranging from gastroenteritis to typhoid fever. It is a food - and water - borne pathogen and infects via ingestion followed by invasion of intestinal epithelial cells and phagocytic cells. In this study we employed a mutational approach to define the nutrients and metabolic pathways required by Salmonella enterica serovar Typhimurium during infection of a human epithelial cell line (HeLa). We deleted the key glycolytic genes, pfkA and pfkB to show that S. Typhimurium utilizes glycolysis for replication within HeLa cells; however, glycolysis was not absolutely essential for intracellular replication. Using S. Typhimurium strains deleted for genes encoding components of the phosphotransferase system and glucose transport, we show that glucose is a major substrate required for the intracellular replication of S. Typhimurium in HeLa cells. We also deleted genes encoding enzymes involved in the utilization of gluconeogenic substrates and the glyoxylate shunt and show that neither of these pathways were required for intracellular replication of S. Typhimurium within HeLa cells

    An Incomplete TCA Cycle Increases Survival of Salmonella Typhimurium during Infection of Resting and Activated Murine Macrophages

    Get PDF
    In comparison to the comprehensive analyses performed on virulence gene expression, regulation and action, the intracellular metabolism of Salmonella during infection is a relatively under-studied area. We investigated the role of the tricarboxylic acid (TCA) cycle in the intracellular replication of Salmonella Typhimurium in resting and activated macrophages, epithelial cells, and during infection of mice.We constructed deletion mutations of 5 TCA cycle genes in S. Typhimurium including gltA, mdh, sdhCDAB, sucAB, and sucCD. We found that the mutants exhibited increased net intracellular replication in resting and activated murine macrophages compared to the wild-type. In contrast, an epithelial cell infection model showed that the S. Typhimurium ΔsucCD and ΔgltA strains had reduced net intracellular replication compared to the wild-type. The glyoxylate shunt was not responsible for the net increased replication of the TCA cycle mutants within resting macrophages. We also confirmed that, in a murine infection model, the S. Typhimurium ΔsucAB and ΔsucCD strains are attenuated for virulence.Our results suggest that disruption of the TCA cycle increases the ability of S. Typhimurium to survive within resting and activated murine macrophages. In contrast, epithelial cells are non-phagocytic cells and unlike macrophages cannot mount an oxidative and nitrosative defence response against pathogens; our results show that in HeLa cells the S. Typhimurium TCA cycle mutant strains show reduced or no change in intracellular levels compared to the wild-type. The attenuation of the S. Typhimurium ΔsucAB and ΔsucCD mutants in mice, compared to their increased net intracellular replication in resting and activated macrophages suggest that Salmonella may encounter environments within the host where a complete TCA cycle is advantageous

    Which patient will feel down, which will be happy? The need to study the genetic disposition of emotional states

    Get PDF
    Purpose In quality-of-life (QL) research, the genetic susceptibility of negative and positive emotions is frequently ignored, taken for granted, or treated as noise. The objectives are to describe: (1) the major findings of studies addressing the heritable and environmental causes of variation in negative and positive emotional states and (2) the major biological pathways of and genetic variants involved in these emotional states

    Brain age predicts mortality

    Get PDF
    Age-associated disease and disability are placing a growing burden on society. However, ageing does not affect people uniformly. Hence, markers of the underlying biological ageing process are needed to help identify people at increased risk of age-associated physical and cognitive impairments and ultimately, death. Here, we present such a biomarker, ‘brain-predicted age’, derived using structural neuroimaging. Brain-predicted age was calculated using machine-learning analysis, trained on neuroimaging data from a large healthy reference sample (N = 2001), then tested in the Lothian Birth Cohort 1936 (N = 669), to determine relationships with age-associated functional measures and mortality. Having a brain-predicted age indicative of an older-appearing brain was associated with: weaker grip strength, poorer lung function, slower walking speed, lower fluid intelligence, higher allostatic load and increased mortality risk. Furthermore, while combining brain-predicted age with grey matter and cerebrospinal fluid volumes (themselves strong predictors) not did improve mortality risk prediction, the combination of brain-predicted age and DNA-methylation-predicted age did. This indicates that neuroimaging and epigenetics measures of ageing can provide complementary data regarding health outcomes. Our study introduces a clinically-relevant neuroimaging ageing biomarker and demonstrates that combining distinct measurements of biological ageing further helps to determine risk of age-related deterioration and death

    Genome-wide association for major depression through age at onset stratification

    Get PDF
    BACKGROUND: Major depressive disorder (MDD) is a disabling mood disorder, and despite a known heritable component, a large meta-analysis of genome-wide association studies revealed no replicable genetic risk variants. Given prior evidence of heterogeneity by age at onset in MDD, we tested whether genome-wide significant risk variants for MDD could be identified in cases subdivided by age at onset. METHODS: Discovery case-control genome-wide association studies were performed where cases were stratified using increasing/decreasing age-at-onset cutoffs; significant single nucleotide polymorphisms were tested in nine independent replication samples, giving a total sample of 22,158 cases and 133,749 control subjects for subsetting. Polygenic score analysis was used to examine whether differences in shared genetic risk exists between earlier and adult-onset MDD with commonly comorbid disorders of schizophrenia, bipolar disorder, Alzheimer’s disease, and coronary artery disease. RESULTS: We identified one replicated genome-wide significant locus associated with adult-onset (>27 years) MDD (rs7647854, odds ratio: 1.16, 95% confidence interval: 1.11–1.21, p = 5.2 × 10-11). Using polygenic score analyses, we show that earlier-onset MDD is genetically more similar to schizophrenia and bipolar disorder than adult-onset MDD. CONCLUSIONS: We demonstrate that using additional phenotype data previously collected by genetic studies to tackle phenotypic heterogeneity in MDD can successfully lead to the discovery of genetic risk factor despite reduced sample size. Furthermore, our results suggest that the genetic susceptibility to MDD differs between adult- and earlier-onset MDD, with earlier-onset cases having a greater genetic overlap with schizophrenia and bipolar disorder

    Location-Specific Responses to Thermal Stress in Larvae of the Reef-Building Coral Montastraea faveolata

    Get PDF
    The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations.To test the hypothesis that larval transcription profiles reflect location-specific responses to thermal stress, symbiont-free gametes from three to four colonies of the scleractinian coral Montastraea faveolata were collected from Florida and Mexico, fertilized, and raised under mean and elevated (up 1 to 2 degrees C above summer mean) temperatures. These locations have been shown to exchange larvae frequently enough to prevent significant differentiation of neutral loci. Differences among 1,310 unigenes were simultaneously characterized using custom cDNA microarrays, allowing investigation of gene expression patterns among larvae generated from wild populations under stress. Results show both conserved and location-specific variation in key processes including apoptosis, cell structuring, adhesion and development, energy and protein metabolism, and response to stress, in embryos of a reef-building coral.These results provide first insights into location-specific variation in gene expression in the face of gene flow, and support the hypothesis that coral host genomes may house adaptive potential needed to deal with changing environmental conditions

    Possible Associations of NTRK2 Polymorphisms with Antidepressant Treatment Outcome: Findings from an Extended Tag SNP Approach

    Get PDF
    Background: Data from clinical studies and results from animal models suggest an involvement of the neurotrophin system in the pathology of depression and antidepressant treatment response. Genetic variations within the genes coding for the brain-derived neurotrophic factor (BDNF) and its key receptor Trkb (NTRK2) may therefore influence the response to antidepressant treatment. Methods: We performed a single and multi-marker association study with antidepressant treatment outcome in 398 depressed Caucasian inpatients participating in the Munich Antidepressant Response Signature (MARS) project. Two Caucasian replication samples (N = 249 and N = 247) were investigated, resulting in a total number of 894 patients. 18 tagging SNPs in the BDNF gene region and 64 tagging SNPs in the NTRK2 gene region were genotyped in the discovery sample; 16 nominally associated SNPs were tested in two replication samples. Results: In the discovery analysis, 7 BDNF SNPs and 9 NTRK2 SNPs were nominally associated with treatment response. Three NTRK2 SNPs (rs10868223, rs1659412 and rs11140778) also showed associations in at least one replication sample and in the combined sample with the same direction of effects (PcorrP_{corr} = .018, PcorrP_{corr} = .015 and PcorrP_{corr} = .004, respectively). We observed an across-gene BDNF-NTRK2 SNP interaction for rs4923468 and rs1387926. No robust interaction of associated SNPs was found in an analysis of BDNF serum protein levels as a predictor for treatment outcome in a subset of 93 patients. Conclusions/Limitations: Although not all associations in the discovery analysis could be unambiguously replicated, the findings of the present study identified single nucleotide variations in the BDNF and NTRK2 genes that might be involved in antidepressant treatment outcome and that have not been previously reported in this context. These new variants need further validation in future association studies
    corecore