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Abstract
Our goal in the current paper is to derive the sampling theorems of a Dirac system
with a spectral parameter appearing linearly in the boundary conditions and also
with an internal point of discontinuity. To derive the sampling theorems including the
construction of Green’s matrix as well as the eigenvector-function expansion
theorem, we briefly study the spectral analysis of the problem as in Levitan and
Sargsjan (Translations of Mathematical Monographs, vol. 39, 1975; Sturm-Liouville and
Dirac Operators, 1991) in a way similar to that of Fulton (Proc. R. Soc. Edinb. A
77:293-308, 1977) and Kerimov (Differ. Equ. 38(2):164-174, 2002). We derive sampling
representations for transforms whose kernels are either solutions or Green’s matrix of
the problem. In the special case, when our problem is continuous, the obtained
results coincide with the corresponding results in Annaby and Tharwat (J. Appl. Math.
Comput. 36:291-317, 2011).
MSC: 34L16; 94A20; 65L15

Keywords: Dirac systems; transmission conditions; eigenvalue parameter in the
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1 Introduction
The sampling theory says that a function may be determined by its sampled values at some
certain points provided the function satisfies some certain conditions. Let us consider the
Paley-Wiener space B

σ of all L(R)-functions whose Fourier transforms vanish outside
[–σ ,σ ]. This space is characterized by the following relation which is due to Paley and
Wiener [, ]:

f (λ) ∈ B
σ ⇐⇒ f (λ) =

√
π

∫ σ

–σ

eiwλg(w) dw

for some function g(·) ∈ L(–σ ,σ ). (.)

In engineering terminology, elements of the Paley-Wiener space B
σ are called band-

limited signals with band-width σ > . The space B
σ coincides with the class of all L(R)-

entire functions with exponential type σ . The classical sampling theorem of Whittaker-
Kotel’nikov-Shannon (WKS) states [–]: If f (λ) ∈ B

σ , then it is completely determined

© 2015 Tharwat and Alofi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/206541162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13661-015-0290-z
mailto:zahraa26@yahoo.com


Tharwat and Alofi Boundary Value Problems  (2015) 2015:33 Page 2 of 27

from its values at the points λk = kπ/σ , k ∈ Z, by means of the formula

f (λ) =
∞∑

k=–∞
f (λk) sincσ (λ – λk), λ ∈ C, (.)

where

sincμ =

⎧⎨
⎩

sinμ

μ
, μ �= ,

, μ = .
(.)

The convergence of series (.) is uniform on R and on compact subsets of C and it is
absolute on C. Moreover, series (.) is in the L(R)-norm. The WKS sampling theorem
has many applications in signal processing (see, e.g., []).

The WKS sampling theorem has been generalized in many different ways. Here we are
interested in two extensions. The first is concerned with replacing the equidistant sam-
pling points by more general ones, which is very important from the practical point of
view. The following theorem, which is known in some literature as the Paley-Wiener the-
orem [], gives a sampling theorem with a more general class of sampling points.

The Paley and Wiener theorem states that if {λk}, k ∈ Z is a sequence of real numbers
such that

E := sup
k∈Z

∣∣∣∣λk –
kπ

σ

∣∣∣∣ <
π

σ
, (.)

and � is an entire function defined by

�(λ) := (λ – λ)
∞∏

k=

(
 –

λ

λk

)(
 –

λ

λ–k

)
, (.)

then, for any function of the form (.), we have

f (λ) =
∑
k∈Z

f (λk)
�(λ)

�′(λk)(λ – λk)
, λ ∈C. (.)

Series (.) converges uniformly on compact subsets of C.
The WSK sampling theorem is a special case of this theorem because if we choose λk =

kπ/σ = –λ–k , then

�(λ) = λ

∞∏
k=

(
 –

λ

λk

)(
 +

λ

λk

)
= λ

∞∏
k=

(
 –

(λσ /π )

k

)
=

sinλσ

σ
, �′(λk) = (–)k .

The sampling series (.) can be regarded as an extension of the classical Lagrange in-
terpolation formula to R for functions of exponential type. Therefore, (.) is called a
Lagrange-type interpolation expansion. Note that, although the theorem in its final form
may be attributed to Levinson [] and Kadec [], it could be named after Paley and
Wiener who first derived the theorem in a more restrictive form, see [, , ] for more
details.



Tharwat and Alofi Boundary Value Problems  (2015) 2015:33 Page 3 of 27

The second extension of the WKS sampling theorem is the theorem of Kramer []. The
classical Kramer sampling theorem provides a method for obtaining orthogonal sampling
theorems. This theorem has played a very significant role in sampling theory, interpolation
theory, signal analysis and, generally, in mathematics; see the survey articles [, ]. The
statement of this general result is as follows: If I is a finite closed interval, K(·,λ) : I ×C →
C is a function continuous in λ such that K(·,λ) ∈ L(I) for all λ ∈ C, and let {λk}k∈Z be
a sequence of real numbers such that {K(·,λk)}k∈Z is a complete orthogonal set in L(I).
Suppose that

f (λ) =
∫

I
K(w,λ)g(w) dw,

where g(·) ∈ L(I). Then

f (λ) =
∑
k∈Z

f (λk)
∫

I K(w,λ)K(w,λk) dw
‖K(·,λk)‖

L(I)
. (.)

Series (.) converges uniformly wherever ‖K(·, t)‖L(I) as a function of t is bounded. In
this theorem sampling representations were given for integral transforms whose kernels
are more general than exp(ixt). Also Kramer’s theorem is a generalization of the WKS
theorem. If we take K(w,λ) = eiλw, I = [–σ ,σ ], λk = kπ

σ
, then (.) will be (.).

The relationship between both extensions of the WSK sampling theorem has been in-
vestigated extensively. Starting from a function theory approach, cf. [], it is proved in []
that if K(w,λ), w ∈ I , λ ∈ C satisfies some analyticity conditions, then Kramer’s sampling
formula (.) turns out to be a Lagrange interpolation one, see also [–]. In another
direction, it is shown that Kramer’s expansion (.) could be written as a Lagrange-type
interpolation formula if K(·,λ) and λk are extracted from ordinary differential operators,
see the survey [] and the references cited therein. The present work is a continuation of
the second direction mentioned above. In [], Tharwat et al. studied the sampling the-
orems, with solutions and Green’s matrix, for a discontinuous Dirac system which has
no eigenparameter in boundary conditions, see also []. Also, Tharwat [] studied the
same problem but for a discontinuous Dirac system with eigenparameter in one bound-
ary condition. Although the analysis of the present paper and that of [] look similar,
the treatments and results are different from some aspects. Problems with a spectral pa-
rameter in equations and boundary conditions form an important part of spectral theory
of linear differential operators. A bibliography of papers in which such problems were
considered in connection with specific physical processes can be found in [, ]. In the
present work, we prove that integral transforms associated with Dirac systems, which con-
tain an eigenparameter in all boundary conditions, with an internal point of discontinuity
can also be reconstructed in a sampling form of Lagrange interpolation type. Sampling
results associated with the discontinuous Dirac system that has an eigenparameter in all
boundary conditions have not been extensively studied. Our investigation will be the first
in that direction, introducing a good example. To achieve our aim we briefly study the
spectral analysis of the problem. Then we derive two sampling theorems using solutions
and Green’s matrix, respectively.
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2 A spectral analysis
In this section we define a discontinuous Dirac system which contains an eigenparameter
appearing linearly in all boundary conditions. We define the eigenvalue problem and study
some of its properties. Throughout this paper we consider the Dirac system

[
p(x)y′

(x) – q(x)y(x)
p(x)y′

(x) + q(x)y(x)

]
= λ

[
y(x)

–y(x)

]
, x ∈ [–, ) ∪ (, ], (.)

B(u) := (ω + λ sin θ)y(–) – (ω + λ cos θ)y(–) = , (.)

B(u) := (ν + λ sin θ)y() – (ν + λ cos θ)y() = , (.)

and the transmission conditions

T(u) := γy
(
–) – δy

(
+) = , (.)

T(u) := γy
(
–) – δy

(
+) = , (.)

where λ is a complex spectral parameter; p(x) = p for x ∈ [–, ), p(x) = p for x ∈ (, ];
p >  and p >  are given real numbers; y =

[ y
y

]
, the real-valued functions q(·) and q(·)

are continuous in [–, ) and (, ] and have finite limits q(±) := limx→± q(x), q(±) :=
limx→± q(x); ωi,νi,γi, δi ∈R (i = , ); γi �= , δi �=  (i = , ) and

[
σ

σ

]
:=

[
ω sin θ – ω cos θ

ν cos θ – ν sin θ

]
> . (.)

To formulate a theoretic approach to problem (.)-(.), we define the Hilbert space E =
H⊕C

 with an inner product

〈
Y(·),Z(·)〉

E
:=


p

∫ 

–
y(x)z(x) dx +


p

∫ 


y(x)z(x) dx +


σ

zw +

σ

zw, (.)

where  denotes the matrix transpose,

Y(x) =

⎡
⎢⎣

y(x)
z

z

⎤
⎥⎦ , Z(x) =

⎡
⎢⎣

z(x)
w

w

⎤
⎥⎦ ∈ E, y(x), z(x) ∈H, zi, wi ∈C, i = , ,

H :=

{
y =

[
y

y

]
: y, y ∈ L(–, ) ⊕ L(, )

}
.

Throughout this article, we consider

[
Tω(y(x)) Tν(y(x))
Tθ (y(x)) Tθ (y(x))

]

:=

[
ωy(–) – ωy(–) νy() – νy()

sin θy(–) – cos θy(–) sin θy() – cos θy()

]
. (.)
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Equation (.) can be written as

L(u) := P(x)y′(x) – Q(x)y(x) = λy(x), (.)

where

P(x) =

[
 p(x)

–p(x) 

]
, Q(x) =

[
q(x) 

 q(x)

]
, y(x) =

[
y(x)
y(x)

]
. (.)

For functions y(x), which are defined on [–, ) ∪ (, ] and have finite limit y(±) :=
limx→± y(x), by y()(x) and y()(x) we denote the functions

y()(x) =

⎧⎨
⎩

y(x), x ∈ [–, ),

y(–), x = ,
y()(x) =

⎧⎨
⎩

y(x), x ∈ (, ],

y(+), x = 
(.)

which are defined on I := [–, ] and I := [, ], respectively.
In the following lemma, we will prove that the eigenvalues of problem (.)-(.) are real.

Lemma . Let γγ = δδ. The eigenvalues of problem (.)-(.) are real.

Proof Suppose the reverse that μ �= μ is an eigenvalue of problem (.)-(.). Let
[ y(x)

y(x)
]

be
a corresponding (non-trivial) eigenfunction. By (.), we have

p(x)
d

dx
{

y(x)y(x) – y(x)y(x)
}

= (μ – μ)
{∣∣y(x)

∣∣ +
∣∣y(x)

∣∣}, x ∈ [–, ) ∪ (, ].

Integrating the above equation through [–, ] and [, ], we obtain

(μ – μ)
p

[∫ 

–

(∣∣y(x)
∣∣ +

∣∣y(x)
∣∣)dx

]

= y
(
–)y

(
–) – y

(
–)y

(
–) –

[
y(–)y(–) – y(–)y(–)

]
, (.)

(μ – μ)
p

[∫ 



(∣∣y(x)
∣∣ +

∣∣y(x)
∣∣)dx

]

= y()y() – y()y() –
[
y
(
+)y

(
+) – y

(
+)y

(
+)]. (.)

Then from (.), (.) and transmission conditions we have, respectively,

y(–)y(–) – y(–)y(–) =
σ(μ – μ)|y(–)|

|ω + μ sin θ| ,

y()y() – y()y() = –
σ(μ – μ)|y()|
|ν + μ sin θ|

and

y
(
+)y

(
+) – y

(
+)y

(
+) =

γγ

δδ

[
y
(
–)y

(
–) – y

(
–)y

(
–)].
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Since μ �= μ, it follows from the last three equations and (.), (.) that


p

∫ 

–

(∣∣y(x)
∣∣ +

∣∣y(x)
∣∣)dx +


p

∫ 



(∣∣y(x)
∣∣ +

∣∣y(x)
∣∣)dx

= –
σ|y(–)|

|ω + μ sin θ| –
σδ

|y()|
|ν + μ sin θ| . (.)

This contradicts the conditions 
p

∫ 
–(|y(x)| + |y(x)|) dx+ 

p

∫ 
 (|y(x)| + |y(x)|) dx > 

and σi > , i = , . Consequently, μ must be real. �

Let D(A) ⊆ E be the set of all elements Y(x) =
[ y(x)

Tθ (y(x))
Tθ (y(x))

]
in E such that:

. y(i)(·), y(i)(·) are absolutely continuous on Ii, i = , ,
. L(y) ∈H,
. γiyi(–) – δiyi(+) = , i = , .

Now we define the operator A : D(A) −→ E by

A

⎡
⎢⎣

y(x)
Tθ (y(x))
Tθ (y(x))

⎤
⎥⎦ =

⎡
⎢⎣

L(y)
–Tω(y(x))
–Tν(y(x))

⎤
⎥⎦ ,

⎡
⎢⎣

y(x)
Tθ (y(x))
Tθ (y(x))

⎤
⎥⎦ ∈D(A). (.)

Lemma . Let γγ = δδ. The operator A is symmetric in E.

Proof For Y(·),Z(·) ∈D(A),

〈
AY(·),Z(·)〉

E
=


p

∫ 

–

(
L
(
y(x)
))z(x) dx +


p

∫ 



(
L
(
y(x)
))z(x) dx

–

σ

Tω

(
y(x)
)
Tθ

(
z(x)
)

–

σ

Tν

(
y(x)
)
Tθ

(
z(x)
)
. (.)

By partial integration we obtain

〈
AY(·),Z(·)〉

E
=
〈
Y(·),AZ(·)〉

E
– W(y, z)

(
–)

+ W(y, z)(–) – W(y, z)() + W(y, z)
(
+)

–

σ

[
Tω

(
y(x)
)
Tθ

(
z(x)
)

– Tθ

(
y(x)
)
Tω

(
z(x)
)]

–

σ

[
Tν

(
y(x)
)
Tθ

(
z(x)
)

– Tθ

(
y(x)
)
Tν

(
z(x)
)]

, (.)

where, as usual, by W(y, z)(x) we denote the Wronskian of the functions u and v defined
in [, p.], i.e.,

W(y, z)(x) := y(x)z(x) – y(x)z(x). (.)
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Since y(x) and z(x) satisfy the boundary condition (.)-(.) and transmission conditions
(.) and (.), we get

Tω

(
y(x)
)
Tθ

(
z(x)
)

– Tθ

(
y(x)
)
Tω

(
z(x)
)

= σW(y, z)(–),

Tν

(
y(x)
)
Tθ

(
z(x)
)

– Tθ

(
y(x)
)
Tν

(
z(x)
)

= –σW(y, z)(),

γγW(y, z)
(
–) = δδW(y, z)

(
+).

(.)

Then, substituting the equations of (.) in (.), we obtain

〈
AY(·),Z(·)〉

E
=
〈
Y(·),AZ(·)〉

E
, Y(·),Z(·) ∈D(A). (.)

Hence the operator A is Hermitian. Since D(A) is dense in E (see, e.g., []), then the
operator A is symmetric. �

The operator A : D(A) −→ E and the eigenvalue problem (.)-(.) have the same
eigenvalues. Therefore they are equivalent with respect to this aspect.

Lemma . Let λ and μ be two different eigenvalues of problem (.)-(.). Then the cor-
responding eigenfunctions y(x) and z(x) of this problem satisfy the following equality:


p

∫ 

–
y(x)z(x) dx +


p

∫ 


y(x)z(x) dx

+

σ

Tθ

(
y(x)
)
Tθ

(
z(x)
)

+

σ

Tθ

(
y(x)
)
Tθ

(
z(x)
)

= . (.)

Proof Equation (.) follows immediately from the orthogonality of the corresponding
eigenelements

Y(x) =

⎡
⎢⎣

y(x)
Tθ (y(x))
Tθ (y(x))

⎤
⎥⎦ , Z(x) =

⎡
⎢⎣

z(x)
Tθ (z(x))
Tθ (z(x))

⎤
⎥⎦

in the Hilbert space E. �

Now, we shall construct a special fundamental system of solutions of equation (.) for λ

not being an eigenvalue. Let us consider the following initial value problem:

py′
(x) – q(x)y(x) = λy(x), py′

(x) + q(x)y(x) = –λy(x), x ∈ (–, ), (.)

y(–) = ω + λ cos θ, y(–) = ω + λ sin θ. (.)

By virtue of Theorem . in [] this problem has a unique solution y =
[
y(x,λ)
y(x,λ)

]
, which is

an entire function of λ ∈C for each fixed x ∈ [–, ]. Similarly, employing the same method
as in the proof of Theorem . in [], we see that the problem

py′
(x) – q(x)y(x) = λy(x), py′

(x) + q(x)y(x) = –λy(x), x ∈ (, ), (.)

y() = ν + λ cos θ, y() = ν + λ sin θ (.)
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has a unique solution y =
[
z(x,λ)
z(x,λ)

]
which is an entire function of the parameter λ for each

fixed x ∈ [, ].
Now the functions yi(x,λ) and zi(x,λ) are defined in terms of yi(x,λ) and zi(x,λ), i =

, , respectively, as follows: The initial-value problem

py′
(x) – q(x)y(x) = λy(x), py′

(x) + q(x)y(x) = –λy(x), x ∈ (, ), (.)

y() =
γ

δ
y(,λ), y() =

γ

δ
y(,λ), (.)

has a unique solution y =
[
y(x,λ)
y(x,λ)

]
for each λ ∈C.

Similarly, the following problem also has a unique solution y =
[
z(x,λ)
z(x,λ)

]
:

py′
(x) – q(x)y(x) = λy(x), py′

(x) + q(x)y(x) = –λy(x), x ∈ (–, ), (.)

y() =
δ

γ
z(,λ), y() =

δ

γ
z(,λ). (.)

Let us construct two basic solutions of equation (.) as

y(·,λ) =

[
y(·,λ)
y(·,λ)

]
, z(·,λ) =

[
z(·,λ)
z(·,λ)

]
,

where

y(x,λ) =

⎧⎨
⎩
y(x,λ), x ∈ [–, ),

y(x,λ), x ∈ (, ],
y(x,λ) =

⎧⎨
⎩
y(x,λ), x ∈ [–, ),

y(x,λ), x ∈ (, ],
(.)

z(x,λ) =

⎧⎨
⎩
z(x,λ), x ∈ [–, ),

z(x,λ), x ∈ (, ],
z(x,λ) =

⎧⎨
⎩
z(x,λ), x ∈ [–, ),

z(x,λ), x ∈ (, ].
(.)

Therefore

Tθ

(
y(x,λ)

)
= σ, Tθ

(
z(x,λ)

)
= –σ. (.)

Since the Wronskians W(yi, zi)(x,λ) are independent on x ∈ Ii (i = , ), and yi(x,λ) and
zi(x,λ) functions are entire of the parameter λ for all x ∈ Ii (i = , ), then the functions

�i(λ) := W(yi, zi)(x,λ) = yi(x,λ)zi(x,λ) – yi(x,λ)zi(x,λ), x ∈ Ii, i = , , (.)

are the entire functions of the parameter λ.

Lemma . If the condition γγ = δδ is satisfied, then the equality �(λ) = �(λ) holds
for each λ ∈C.

Proof Taking into account (.)and (.), a short calculation gives γγW(y, z)(,λ) =
δδW(y, z)(,λ), so �(λ) = �(λ) holds for each λ ∈C. �

Corollary . The zeros of the functions �(λ) and �(λ) coincide.
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Then we may introduce to the consideration the characteristic function �(λ) as

�(λ) := �(λ) = �(λ). (.)

Lemma . All eigenvalues of problem (.)-(.) are just zeros of the function �(λ).

Proof Since the functions y(x,λ) and y(x,λ) satisfy the boundary condition (.) and
both transmission conditions (.) and (.), to find the eigenvalues of (.)-(.), we have
to insert the functions y(x,λ) and y(x,λ) in the boundary condition (.) and find the
roots of this equation. �

In the following lemma, we show that all eigenvalues of problem (.)-(.) are simple,
see [, , ].

Lemma . Let γγ = δδ. The eigenvalues of the boundary value problem (.)-(.) form
an at most countable set without finite limit points. All eigenvalues of the boundary value
problem (.)-(.) (of �(λ)) are simple.

Proof The eigenvalues are the zeros of the entire function occurring on the left-hand side
in (see Eq. (.)),

(ν + λ sin θ)y(,λ) – (ν + λ cos θ)y(,λ) = .

We have shown (see Lemma .) that this function does not vanish for non-real λ. In
particular, it does not vanish identically. Therefore, its zeros form an at most countable
set without finite limit points.

By (.) we obtain for λ,μ ∈C, λ �= μ,

p(x)
d

dx
{
y(x,λ)y(x,μ) – y(x,μ)y(x,λ)

}
= (μ – λ)

{
y(x,λ)y(x,μ) + y(x,λ)y(x,μ)

}
.

Integrating the above equation through [–, ] and [, ] and taking into account the initial
conditions (.), (.) and (.), we obtain

y(,λ)y(,μ) – y(,μ)y(,λ) – (μ – λ)σ

= (μ – λ)
(


p

∫ 

–

(
y(x,λ)y(x,μ) + y(x,λ)y(x,μ)

)
dx

+


p

∫ 



(
y(x,λ)y(x,μ) + y(x,λ)y(x,μ)

)
dx
)

. (.)

Dividing both sides of (.) by (λ – μ) and by letting μ −→ λ, we arrive at the relation

y(,λ)
∂y(,λ)

∂λ
– y(,λ)

∂y(,λ)
∂λ

+ σ

= –
(


p

∫ 

–

(∣∣y(x,λ)
∣∣ +

∣∣y(x,λ)
∣∣)dx

+


p

∫ 



(∣∣y(x,λ)
∣∣ +

∣∣y(x,λ)
∣∣)dx

)
. (.)
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We show that the equation

�(λ) = (ν + λ sin θ)y(,λ) – (ν + λ cos θ)y(,λ) =  (.)

has only simple roots. Assume the converse, i.e., equation (.) has a double root λ̃. Then
the following two equations hold:

(ν + λ̃ sin θ)y(, λ̃) – (ν + λ̃ cos θ)y(, λ̃) = , (.)

sin θy(, λ̃) + (ν + λ̃ sin θ)
∂y(, λ̃)

∂λ

– cos θy(, λ̃) – (ν + λ̃ cos θ)
∂y(, λ̃)

∂λ
= . (.)

Since σ �=  and λ̃ is real, then (ν + λ̃ sin θ) + (ν + λ̃ cos θ) �= . Let ν + λ̃ sin θ �= .
From (.) and (.), we have

y(, λ̃) =
(ν + λ̃ cos θ)
(ν + λ̃ sin θ)

y(, λ̃),

∂y(, λ̃)
∂λ

=
σy(, λ̃)

(ν + λ̃ sin θ)
+

(ν + λ̃ cos θ)
(ν + λ̃ sin θ)

∂y(, λ̃)
∂λ

.

(.)

Combining (.) and (.) with λ = λ̃, we obtain

σ(y(, λ̃))

(ν + λ̃ sin θ)
+ σ = –

(

p

∫ 

–

(∣∣y(x,λ)
∣∣ +

∣∣y(x,λ)
∣∣)dx

+


p

∫ 



(∣∣y(x,λ)
∣∣ +

∣∣y(x,λ)
∣∣)dx

)
, (.)

contradicting the assumption σi > , i = , . The other case, when ν + λ̃ cos θ �= , can be
treated similarly and the proof is complete. �

Let {λn}∞n=–∞ denote the sequence of zeros of �(λ). Then

Y(x,λn) :=

⎡
⎢⎣

y(x,λn)
Tθ (y(x,λn))
Tθ (y(x,λn))

⎤
⎥⎦ (.)

are the corresponding eigenvectors of the operator A. Since A is symmetric, then it is easy
to show that the following orthogonality relation

〈
Y(·,λn),Y(·,λm)

〉
E

=  for n �= m (.)

holds. Here {y(·,λn)}∞n=–∞ will be a sequence of eigenvector-functions of (.)-(.) corre-
sponding to the eigenvalues {λn}∞n=–∞. We denote by (x,λn) the normalized eigenvectors
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of A, i.e.,

(x,λn) :=
Y(x,λn)

‖Y(·,λn)‖E =

⎡
⎢⎣

ψ(x,λn)
Tθ (ψ(x,λn))
Tθ (ψ(x,λn))

⎤
⎥⎦ . (.)

Since z(·,λ) satisfies (.)-(.), then the eigenvalues are also determined via

(ω + λ sin θ)z(–,λ) – (ω + cos θ)z(–,λ) = –�(λ). (.)

Therefore {z(·,λn)}∞n=–∞ is another set of eigenvector-functions which is related by
{y(·,λn)}∞n=–∞ with

z(x,λn) = kny(x,λn), x ∈ [–, ) ∪ (, ], n ∈ Z, (.)

where kn �=  are non-zero constants since all eigenvalues are simple. Since the eigenvalues
are all real, we can take the eigenfunctions to be real valued.

3 Green’s matrix and the expansion theorem

Let F(·) =
[

f (·)
w
w

]
, where f (·) =

[ f(·)
f(·)
]
, be a continuous vector-valued function. To study the

completeness of the eigenvectors of A, and hence the completeness of the eigenfunctions
of (.)-(.), we derive Green’s matrix of problem (.)-(.) as well as the resolvent of A.
Indeed, let λ be not an eigenvalue of A and consider the inhomogeneous problem

(A – λI)Y(x) = F(x), Y(x) =

⎡
⎢⎣

y(x)
Tθ (y(x))
Tθ (y(x))

⎤
⎥⎦ ,

where I is the identity operator. Since

(A – λI)Y(x) =

⎡
⎢⎣

L(y)
–Tω(y(x))
–Tν(y(x))

⎤
⎥⎦ – λ

⎡
⎢⎣

y(x)
Tθ (y(x))
Tθ (y(x))

⎤
⎥⎦ =

⎡
⎢⎣

f (x)
w

w

⎤
⎥⎦ ,

then we have

p(x)y′
(x) –

{
q(x) + λ

}
y(x) = f(x),

p(x)y′
(x) +

{
q(x) + λ

}
y(x) = –f(x), x ∈ [–, ) ∪ (, ],

(.)

w = –Tω

(
y(x)
)

– λTθ

(
y(x)
)
, w = –Tν

(
y(x)
)

– λTθ

(
y(x)
)

(.)

and the boundary conditions (.), (.) and (.) with λ are not an eigenvalue of problem
(.)-(.).

Now, we can represent the general solution of (.) in the following form:

y(x,λ) =

⎧⎨
⎩

A
[
y(x,λ)
y(x,λ)

]
+ B

[
z(x,λ)
z(x,λ)

]
, x ∈ [–, ),

A
[
y(x,λ)
y(x,λ)

]
+ B

[
z(x,λ)
z(x,λ)

]
, x ∈ (, ].

(.)
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We applied the standard method of variation of the constants to (.), thus the functions
A(x,λ), B(x,λ) and A(x,λ), B(x,λ) satisfy the linear system of equations

A′
(x,λ)y(x,λ) + B′

(x,λ)z(x,λ) =
f(x)
p

,

A′
(x,λ)y(x,λ) + B′

(x,λ)z(x,λ) = –
f(x)

p
, x ∈ [–, ),

(.)

and

A′
(x,λ)y(x,λ) + B′

(x,λ)z(x,λ) =
f(x)
p

,

A′
(x,λ)y(x,λ) + B′

(x,λ)z(x,λ) = –
f(x)
p

, x ∈ (, ].
(.)

Since λ is not an eigenvalue and �(λ) �= , each of the linear system in (.) and (.) has
a unique solution which leads to

A(x,λ) =


p�(λ)

∫ 

x
z
(ξ ,λ)f (ξ ) dξ + A,

B(x,λ) =


p�(λ)

∫ x

–
y

(ξ ,λ)f (ξ ) dξ + B, x ∈ [–, ),
(.)

A(x,λ) =


p�(λ)

∫ 

x
z
(ξ ,λ)f (ξ ) dξ + A,

B(x,λ) =


p�(λ)

∫ x


y

(ξ ,λ)f (ξ ) dξ + B, x ∈ (, ],
(.)

where A, A, B and B are arbitrary constants, and

y(ξ ,λ) =

⎧⎨
⎩
[
y(ξ ,λ)
y(ξ ,λ)

]
, ξ ∈ [–, ),[

y(ξ ,λ)
y(ξ ,λ)

]
, ξ ∈ (, ],

z(ξ ,λ) =

⎧⎨
⎩
[
z(ξ ,λ)
z(ξ ,λ)

]
, ξ ∈ [–, ),[

z(ξ ,λ)
z(ξ ,λ)

]
, ξ ∈ (, ].

Substituting equations (.) and (.) into (.), we obtain the solution of (.)

y(x,λ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y(x,λ)
p�(λ)

∫ 
x z(ξ ,λ)f (ξ ) dξ + z(x,λ)

p�(λ)
∫ x

– y
(ξ ,λ)f (ξ ) dξ

+ Ay(x,λ) + Bz(x,λ), x ∈ [–, ),
y(x,λ)

p�(λ)
∫ 

x z(ξ ,λ)f (ξ ) dξ + z(x,λ)
p�(λ)

∫ x
 y(ξ ,λ)f (ξ ) dξ

+ Ay(x,λ) + Bz(x,λ), x ∈ (, ].

(.)

Then, from (.) and the transmission conditions (.) and (.), we get

A =


p�(λ)

∫ 


z
(ξ ,λ)f (ξ ) dξ –

w

�(λ)
, B =

w

�(λ)
,

A = –
w

�(λ)
, B =


p�(λ)

∫ 

–
y

(ξ ,λ)f (ξ ) dξ +
w

�(λ)
.

(.)
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Then (.) can be written as

y(x,λ) = –
w

�(λ)
y(x,λ) +

w

�(λ)
z(x,λ) +

z(x,λ)
�(λ)

∫ x

–

y(ξ ,λ)f (ξ )
p(ξ )

dξ

+
y(x,λ)
�(λ)

∫ 

x

z(ξ ,λ)f (ξ )
p(ξ )

dξ , x, ξ ∈ [–, ) ∪ (, ], (.)

which can be written as

y(x,λ) = –
w

�(λ)
y(x,λ) +

w

�(λ)
z(x,λ) +

∫ 

–
G(x, ξ ,λ)

f (ξ )
p(ξ )

dξ , (.)

where

G(x, ξ ,λ) =


�(λ)

⎧⎨
⎩
z(x,λ)y(ξ ,λ), – ≤ ξ ≤ x ≤ , x �= , ξ �= ,

y(x,λ)z(ξ ,λ), – ≤ x ≤ ξ ≤ , x �= , ξ �= .
(.)

Expanding (.) we obtain the concrete form

G(x, ξ ,λ) =


�(λ)

⎧⎨
⎩
[
y(ξ ,λ)z(x,λ) y(ξ ,λ)z(x,λ)
y(ξ ,λ)z(x,λ) y(ξ ,λ)z(x,λ)

]
, – ≤ ξ ≤ x ≤ , x �= , ξ �= ,

[
y(x,λ)z(ξ ,λ) y(x,λ)z(ξ ,λ)
y(x,λ)z(ξ ,λ) y(x,λ)z(ξ ,λ)

]
, – ≤ x ≤ ξ ≤ , x �= , ξ �= .

(.)

The matrix G(x, ξ ,λ) is called Green’s matrix of problem (.)-(.). Obviously, G(x, ξ ,λ)
is a meromorphic function of λ for every (x, ξ ) ∈ ([–, ) ∪ (, ]) which has simple poles
only at the eigenvalues. Therefore

Y(x) = (A – λI)–F(x) =

⎡
⎢⎣

– w
�(λ)y(x,λ) + w

�(λ) z(x,λ) +
∫ 

– G(x, ξ ,λ) f (ξ )
p(ξ ) dξ

Tθ (y(x))
Tθ (y(x))

⎤
⎥⎦ . (.)

Lemma . The operator A is self-adjoint in E.

Proof Since A is a symmetric densely defined operator, then it is sufficient to show that

the deficiency spaces are the null spaces and hence A = A∗. Indeed, if F(x) =
[

f (x)
w
w

]
∈ E

and λ is a non-real number, then taking

Y(x) =

⎡
⎢⎣

y(x)
z

z

⎤
⎥⎦ =

⎡
⎢⎣

– w
�(λ)y(x,λ) + w

�(λ) z(x,λ) +
∫ 

– G(x, ξ ,λ) f (ξ )
p(ξ ) dξ

Tθ (y(x))
Tθ (y(x))

⎤
⎥⎦

implies that Y ∈D(A). Since G(x, ξ ,λ) satisfies conditions (.)-(.), then (A– λI)Y(x) =
F(x). Now we prove that the inverse of (A – λI) exists. Since A is a symmetric operator,
then, if AY(x) = λY(x),

(λ – λ)
〈
Y(·),Y(·)〉

E
=
〈
Y(·),λY(·)〉

E
–
〈
λY(·),Y(·)〉

E

=
〈
Y(·),AY(·)〉

E
–
〈
AY(·),Y(·)〉

E

= .
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Since λ – λ �= , then 〈Y(·),Y(·)〉E = , i.e., Y = . Then R(λ;A) := (A– λI)–, the resolvent
operator of A, exists. Thus

R(λ;A)F = (A – λI)–F = Y .

Take λ = ±i. The domains of (A – iI)– and (A + iI)– are exactly E. Consequently, the
ranges of (A – iI) and (A + iI) are also E. Hence the deficiency spaces of A are

N–i := N
(
A∗ + iI

)
= R(A – iI)⊥ = E

⊥
 = {},

Ni := N
(
A∗ – iI

)
= R(A + iI)⊥ = E

⊥
 = {}.

Hence A is self-adjoint. �

The next theorem is an eigenfunction expansion theorem. The proof is exactly similar
to that of Levitan and Sargsjan derived in [, pp.-], see also [, , , ].

Theorem .
(i) For Y(·) ∈ E,

∥∥Y(·)∥∥
E

=
∞∑

n=–∞

∣∣〈Y(·),n(·)〉
E

∣∣. (.)

(ii) For Y(·) ∈D(A),

Y(x) =
∞∑

n=–∞

〈
Y(·),n(·)〉

E
n(x), (.)

the series being absolutely and uniformly convergent in the first component on
[–, ) ∪ (, ], and absolutely convergent in the second component.

4 Asymptotic formulas of eigenvalues and eigenvector-functions
In this section, we derive the asymptotic formulae of the eigenvalues {λn}∞n=–∞ and the
eigenvector-functions {y(·,λn)}∞n=–∞. In the following lemma, we shall transform equations
(.), (.), (.) and (.) into the integral equations, see [].

Lemma . Let y(·,λ) be the solution of (.) defined in Section . Then the following inte-
gral equations hold:

y(x,λ) = ω cos

[
λ(x + )

p

]
– ω sin

[
λ(x + )

p

]
+ λ cos

[(
λ(x + )

p

)
+ θ

]

–

p

∫ x

–
sin

[
λ(x – t)

p

]
q(t)y(t,λ) dt

–

p

∫ x

–
cos

[
λ(x – t)

p

]
q(t)y(t,λ) dt, (.)
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y(x,λ) = ω cos

[
λ(x + )

p

]
+ ω sin

[
λ(x + )

p

]
+ λ sin

[(
λ(x + )

p

)
+ θ

]

+

p

∫ x

–
cos

[
λ(x – t)

p

]
q(t)y(t,λ) dt

–

p

∫ x

–
sin

[
λ(x – t)

p

]
q(t)y(t,λ) dt, (.)

y(x,λ) =
γ

δ
y
(
–,λ

)
cos

[
λx
p

]

–
γ

δ
y
(
–,λ

)
sin

[
λx
p

]
–


p

∫ x


sin

[
λ(x – t)

p

]
q(t)y(t,λ) dt

–


p

∫ x


cos

[
λ(x – t)

p

]
q(t)y(t,λ) dt, (.)

y(x,λ) =
γ

δ
y
(
–,λ

)
sin

[
λx
p

]

+
γ

δ
y
(
–,λ

)
cos

[
λx
p

]
+


p

∫ x


cos

[
λ(x – t)

p

]
q(t)y(t,λ) dt

–


p

∫ x


sin

[
λ(x – t)

p

]
q(t)y(t,λ) dt. (.)

Proof To prove (.) and (.), it is enough substitute py
′
(t,λ) – λy(t,λ) and

–py
′
(t,λ) – λy(t,λ) instead of q(t)y(t,λ) and q(t)y(t,λ) in the integral terms of

(.) and (.) and integrate by parts. By the same way, we can prove (.) and (.) by
substituting py

′
(t,λ) – λy(t,λ) and –py

′
(t,λ) – λy(t,λ) instead of q(t)y(t,λ) and

q(t)y(t,λ) in the integral terms of (.) and (.). �

For |λ| −→ ∞, the following estimates hold uniformly with respect to x, x ∈ [–, ) ∪
(, ] (cf. [, p.], see also [, ]):

y(x,λ) = λ cos

[(
λ(x + )

p

)
+ θ

]
+ O

(
exp

[
τ

(x + )
p

])
, (.)

y(x,λ) = λ sin

[(
λ(x + )

p

)
+ θ

]
+ O

(
exp

[
τ

(x + )
p

])
, (.)

y(x,λ) = λ

[
γ

δ
cos

[(
λ

p

)
+ θ

]
cos

[
λx
p

]
–

γ

δ
sin

[(
λ

p

)
+ θ

]
sin

[
λx
p

]]

+ O
(

exp

[
τ

(px + p)
pp

])
, (.)

y(x,λ) = λ

[
γ

δ
cos

[(
λ

p

)
+ θ

]
sin

[
λx
p

]
+

γ

δ
sin

[(
λ

p

)
+ θ

]
cos

[
λx
p

]]

+ O
(

exp

[
τ

(px + p)
pp

])
, (.)

where τ = |�λ|. Now we will find an asymptotic formula of the eigenvalues. Since the
eigenvalues of the boundary value problem (.)-(.) coincide with the roots of the equa-
tion

(ν + λ sin θ)y(,λ) – (ν + λ cos θ)y(,λ) = , (.)
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then from estimates (.) and (.) and (.) we get

λ sin θ

[
γ

δ
cos

[(
λ

p

)
+ θ

]
cos

[
λ

p

]
–

γ

δ
sin

[(
λ

p

)
+ θ

]
sin

[
λ

p

]]

– λ cos θ

[
γ

δ
cos

[(
λ

p

)
+ θ

]
sin

[
λ

p

]
+

γ

δ
sin

[(
λ

p

)
+ θ

]
cos

[
λ

p

]]

+ O
(

λ exp

[
τ

(p + p)
pp

])
= ,

which can be written as

sin θ

[
γ

δ
cos

[(
λ

p

)
+ θ

]
cos

[
λ

p

]
–

γ

δ
sin

[(
λ

p

)
+ θ

]
sin

[
λ

p

]]

– cos θ

[
γ

δ
cos

[(
λ

p

)
+ θ

]
sin

[
λ

p

]
+

γ

δ
sin

[(
λ

p

)
+ θ

]
cos

[
λ

p

]]

+ O
(


λ

exp

[
τ

(p + p)
pp

])
= . (.)

Then, if γδ – γδ = , equation (.) becomes

sin

[
λ

(
p + p

pp

)
+ θ – θ

]
+ O
(


λ

exp

[
τ

(p + p)
pp

])
= . (.)

For large |λ|, equation (.) obviously has solutions which, as is not hard to see, have
the form

λn

(
p + p

pp

)
+ θ – θ = nπ + δn, n = ,±,±, . . . . (.)

Inserting these values in (.), we find that sin δn = O( 
n ), i.e., δn = O( 

n ). Thus we obtain
the following asymptotic formula for the eigenvalues:

λn =
pp

p + p
(nπ + θ – θ) + O

(

n

)
, n = ,±,±, . . . . (.)

Using formulae (.), we obtain the following asymptotic formulae for the eigenvector-
functions y(·,λn):

y(x,λn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
λn cos[( λn(x+)

p
)+θ]+O()

λn sin[( λn(x+)
p

)+θ]+O()

]
, x ∈ [–, ),

[
λn[ γ

δ
cos[( λn

p
)+θ] cos[ λnx

p
]– γ

δ
sin[( λn

p
)+θ] sin[ λnx

p
]]+O()

λn[ γ
δ

cos[( λn
p

)+θ] sin[ λnx
p

]+ γ
δ

sin[( λn
p

)+θ] cos[ λnx
p

]]+O()

]
, x ∈ (, ],

(.)

where

y(x,λn) =

⎧⎨
⎩
[
y(x,λn)
y(x,λn)

]
, x ∈ [–, ),[

y(x,λn)
y(x,λn)

]
, x ∈ (, ].

(.)
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5 The sampling theorems
In this section we derive two sampling theorems associated with problem (.)-(.). The
first sampling theorem of this section associated with the boundary value problem (.)-
(.) is the following theorem.

Theorem . Let f (x) =
[ f(x)

f(x)
] ∈H. For λ ∈C, let

F(λ) =

p

∫ 

–
f (x)y(x,λ) dx +


p

∫ 


f (x)y(x,λ) dx, (.)

where y(·,λ) is the solution defined above. Then F(λ) is an entire function of exponential
type that can be reconstructed from its values at the points {λn}∞n=–∞ via the sampling for-
mula

F(λ) =
∞∑

n=–∞
F(λn)

�(λ)
(λ – λn)�′(λn)

. (.)

Series (.) converges absolutely on C and uniformly on any compact subset of C, and �(λ)
is the entire function defined in (.).

Proof Relation (.) can be rewritten in the form

F(λ) =
〈
F(·),Y(·,λ)

〉
E

=

p

∫ 

–
f (x)y(x,λ) dx +


p

∫ 


f (x)y(x,λ) dx, λ ∈C, (.)

where

F(x) =

⎡
⎢⎣

f (x)



⎤
⎥⎦ , Y(x,λ) =

⎡
⎢⎣

y(x,λ)
Tθ (y(x,λ))
Tθ (y(x,λ))

⎤
⎥⎦ ∈ E.

Since both F(·) and Y(·,λ) are in E, then they have the Fourier expansions

F(x) =
∞∑

n=–∞

〈
F(·),Y(·,λn)

〉
E

Y(x,λn)
‖Y(·,λn)‖

E

,

Y(x,λ) =
∞∑

n=–∞

〈
Y(·,λ),Y(·,λn)

〉
E

Y(x,λn)
‖Y(·,λn)‖

E

,

(.)

where λ ∈C and

〈
F(·),Y(·,λn)

〉
E

=

p

∫ 

–
f (x)y(x,λn) dx +


p

∫ 


f (x)y(x,λn) dx. (.)

Applying Parseval’s identity to (.), we obtain

F(λ) =
∞∑

n=–∞
F(λn)

〈Y(·,λ),Y(·,λn)〉E
‖Y(·,λn)‖

E

, λ ∈C. (.)
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Now we calculate 〈Y(·,λ),Y(·,λn)〉E and ‖Y(·,λn)‖E of λ ∈ C, n ∈ Z. To prove expansion
(.), we need to show that

〈Y(·,λ),Y(·,λn)〉E
‖Y(·,λn)‖

E

=
�(λ)

(λ – λn)�′(λ)
, n ∈ Z,λ ∈ C. (.)

Indeed, let λ ∈C and n ∈ Z be fixed. By the definition of the inner product of E, we have

〈
Y(·,λ),Y(·,λn)

〉
E

=

p

∫ 

–
y

(x,λ)y(x,λn) dx +


p

∫ 


y

(x,λ)y(x,λn) dx

+

σ

Tθ

(
y(x,λ)

)
Tθ

(
y(x,λn)

)

+

σ

Tθ

(
y(x,λ)

)
Tθ

(
y(x,λn)

)
. (.)

From Green’s identity (see [, p.]) we have

(λn – λ)
[


p

∫ 

–
y

(x,λ)y(x,λn) dx +


p

∫ 


y

(x,λ)y(x,λn) dx
]

= W
(
y
(
–,λ

)
,y
(
–,λn

))
– W

(
y(–,λ),y(–,λn)

)

– W
(
y
(
+,λ

)
,y
(
+,λn

))
+ W

(
y(,λ),y(,λn)

)
. (.)

Then (.) and initial conditions (.) and (.) imply

(λn – λ)
[


p

∫ 

–
y

(x,λ)y(x,λn) dx +


p

∫ 


y

(x,λ)y(x,λn) dx
]

= W
(
y(,λ),y(,λn)

)
– (λn – λ)σ, (.)

from which


p

∫ 

–
y

(x,λ)y(x,λn) dx +


p

∫ 


y

(x,λ)y(x,λn) dx

=
W(y(,λ),y(,λn))

λn – λ
– σ. (.)

From (.), (.) and (.), we have

W
(
y(,λ),y(,λn)

)
= y(,λ)y(,λn) – y(,λ)y(,λn)

= k–
n
[
y(,λ)z(,λn) – y(,λ)z(,λn)

]

= k–
n
[
(λn sin θ + ν)y(,λ) – (λn cos θ + ν)y(,λ)

]

= k–
n
[
�(λ) + (λn – λ)Tθ

(
y(x,λ)

)]
. (.)

Relations (.) and Tθ (z(x,λn)) = –σ and the linearity of the boundary conditions yield


σ

Tθ

(
y(x,λ)

)
Tθ

(
y(x,λn)

)
=

k–
n
σ

Tθ

(
y(x,λ)

)
Tθ

(
z(x,λn)

)
= –k–

n Tθ

(
y(x,λ)

)
. (.)
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Substituting from (.), (.), (.) and Tθ (y(x,λ)) = Tθ (y(x,λn)) = σ into (.), we get

〈
Y(·,λ),Y(·,λn)

〉
E

= k–
n

�(λ)
λn – λ

. (.)

Letting λ → λn in (.) and since the zeros of �(λ) are simple, we get

〈
Y(·,λn),Y(·,λn)

〉
E

=
∥∥Y(·,λn)

∥∥
E

= –k–
n �′(λn). (.)

Since λ ∈ C and n ∈ Z are arbitrary, then (.) and (.) hold for all λ ∈ C and all n ∈ Z.
Therefore from (.) and (.) we get (.). Hence (.) is proved with a pointwise con-
vergence on C. Now we investigate the convergence of (.). First we prove that it is abso-
lutely convergent on C. Using the Cauchy-Schwarz inequality for λ ∈C, we get

∞∑
k=–∞

∣∣∣∣F(λk)
�(λ)

(λ – λk)�′(λk)

∣∣∣∣≤
( ∞∑

k=–∞

|〈F(·),Y(·,λk)〉E|
‖Y(·,λk)‖

E

)/

×
( ∞∑

k=–∞

|〈Y(·,λ),Y(·,λk)〉E|
‖Y(·,λk)‖

E

)/

. (.)

Since F(·), Y(·,λ) ∈ E, then the two series on the right-hand side of (.) converge. Thus
series (.) converges absolutely on C. As for uniform convergence, let M ⊂C be compact.
Let λ ∈ M and N > . Define κN (λ) to be

κN (λ) :=

∣∣∣∣∣F(λ) –
N∑

k=–N

F(λk)
�(λ)

(λ – λk)�′(λk)

∣∣∣∣∣. (.)

Using the same method developed above, we have

κN (λ) ≤
( N∑

k=–N

|〈F(·),Y(·,λk)〉E|
‖Y(·,λk)‖

E

)/( N∑
k=–N

|〈Y(·,λ),Y(·,λk)〉E|
‖Y(·,λk)‖

E

)/

. (.)

Therefore

κN (λ) ≤ ∥∥Y(·,λk)
∥∥
E

( N∑
k=–N

|〈F(·),Y(·,λk)〉E|
‖Y(·,λk)‖

E

)/

. (.)

Since [–, ] × M is compact, then we can find a positive constant CM such that

∥∥Y(·,λ)
∥∥
E

≤ CM for all λ ∈ M. (.)

Then

κN (λ) ≤ CM

( N∑
k=–N

|〈F(·),Y(·,λk)〉E|
‖Y(·,λk)‖

E

)/

(.)
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uniformly on M. In view of Parseval’s equality,

( N∑
k=–N

|〈F(·),Y(·,λk)〉E|
‖Y(·,λk)‖

E

)/

−→  as N −→ ∞.

Thus κN (λ) →  uniformly on M. Hence (.) converges uniformly on M. Thus F(λ) is an
entire function. From the relation

∣∣F(λ)
∣∣≤ 

p

∫ 

–

∣∣f(x)
∣∣∣∣y(x,λ)

∣∣dx +

p

∫ 

–

∣∣f(x)
∣∣∣∣y(x,λ)

∣∣dx

+


p

∫ 



∣∣f(x)
∣∣∣∣y(x,λ)

∣∣dx +


p

∫ 



∣∣f(x)
∣∣∣∣y(x,λ)

∣∣dx, λ ∈C

and the fact that yij(·,λ), i, j = , , are entire functions of exponential type, we conclude
that F(λ) is of exponential type. �

Remark . To see that expansion (.) is a Lagrange-type interpolation, we may replace
�(λ) by the canonical product

�̃(λ) = (λ – λ)
∞∏

n=

(
 –

λ

λn

)(
 –

λ

λ–n

)
. (.)

From Hadamard’s factorization theorem, see [], �(λ) = h(λ)�̃(λ), where h(λ) is an entire
function with no zeros. Thus,

�(λ)
�′(λn)

=
h(λ)�̃(λ)

h(λn)�̃′(λn)

and (.), (.) remain valid for the function F(λ)/h(λ). Hence

F(λ) =
∞∑

n=–∞
F(λn)

h(λ)�̃(λ)
h(λn)�̃′(λn)(λ – λn)

. (.)

We may redefine (.) by taking the kernel y(·,λ)
h(λ) = ỹ(·,λ) to get

F̃(λ) =
F(λ)
h(λ)

=
∞∑

n=–∞
F̃(λn)

�̃(λ)
(λ – λn)�̃′(λn)

. (.)

The next theorem is devoted to give vector-type interpolation sampling expansions as-
sociated with problem (.)-(.) for integral transforms whose kernels are defined in
terms of Green’s matrix. As we see in (.), Green’s matrix G(x, ξ ,λ) of problem (.)-(.)
has simple poles at {λk}∞k=–∞. Define the function G(x,λ) to be G(x,λ) := �(λ)G(x, ξ,λ),
where ξ ∈ [–, ) ∪ (, ] is a fixed point and �(λ) is the function defined in (.) or it is
the canonical product (.).

Theorem . Let f (x) =
[ f(x)

f(x)
] ∈ E. Let F (λ) =

[ F(λ)
F(λ)

]
be the vector-valued transform

F (λ) =

p

∫ 

–
G(x,λ)f (x) dx +


p

∫ 


G(x,λ)f (x) dx. (.)
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Then F (λ) is a vector-valued entire function of exponential type that admits the vector-
valued sampling expansion

F (λ) =
∞∑

n=–∞
F (λn)

�(λ)
(λ – λn)�′(λn)

. (.)

The vector-valued series (.) converges absolutely onC and uniformly on compact subsets
of C. Here (.) means

F(λ) =
∞∑

n=–∞
F(λn)

�(λ)
(λ – λn)�′(λn)

, F(λ) =
∞∑

n=–∞
F(λn)

�(λ)
(λ – λn)�′(λn)

, (.)

where both series converge absolutely on C and uniformly on compact sets of C.

Proof The integral transform (.) can be written as

F (λ) =
〈
G(·,λ),F(·)〉

E
, (.)

F(x) =

⎡
⎢⎣

f (x)



⎤
⎥⎦ , G(x,λ) =

⎡
⎢⎣

G(x,λ)
Tθ (G(x,λ))
Tθ (G(x,λ))

⎤
⎥⎦ ∈ E.

Applying Parseval’s identity to (.) with respect to {Y(·,λn)}∞n=–∞, we obtain

F (λ) =
∞∑

n=–∞

〈
G(·,λ),Y(·,λn)

〉
E

〈F(·),Y(·,λn)〉E
‖Y(·,λn)‖

E

. (.)

Let λ ∈C such that λ �= λn for n ∈ Z. Since each Y(·,λn) is an eigenvector of A, then

(A – λI)Y(x,λn) = (λn – λ)Y(x,λn).

Thus

(A – λI)–
Y(x,λn) =


λn – λ

Y(x,λn). (.)

From (.) and (.) we obtain

–
Tθ (y(x,λn))

�(λ)
y(ξ,λ) +

Tθ (y(x,λn))
�(λ)

z(ξ,λ)

+

p

∫ 

–
G(x, ξ,λ)y(x,λn) dx +


p

∫ 


G(x, ξ,λ)y(x,λn) dx

=


λn – λ
y(ξ,λn). (.)
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Using Tθ (y(x,λn)) = σ, (.) and Tθ (z(x,λn)) = –σ in (.), we get

σk–
n

�(λ)
y(ξ,λ) +

σ

�(λ)
z(ξ,λ) +


p

∫ 

–
G(x, ξ,λ)y(x,λn) dx

+


p

∫ 


G(x, ξ,λ)y(x,λn) dx

=


λn – λ
y(ξ,λn). (.)

Hence (.) can be rewritten as

σk–
n y(ξ,λ) + σz(ξ,λ) +


p

∫ 

–
G(x,λ)y(x,λn) dx +


p

∫ 


G(x,λ)y(x,λn) dx

=
�(λ)
λn – λ

y(ξ,λn). (.)

The definition of G(·,λ) implies

〈
G(·,λ),Y(·,λn)

〉
E

=

p

∫ 

–
G(x,λ)y(x,λn) dx +


p

∫ 


G(x,λ)y(x,λn) dx

+

σ

Tθ

(
G(x,λ)

)
Tθ

(
y(x,λn)

)

+

σ

Tθ

(
G(x,λ)

)
Tθ

(
y(x,λn)

)
. (.)

Moreover, from (.) we have

Tθ

(
G(x,λ)

)
= z(ξ,λ)Tθ

(
y

(x,λ)
)
, Tθ

(
G(x,λ)

)
= y(ξ,λ)Tθ

(
z
(x,λ)

)
. (.)

Combining (.), Tθ (y(x,λ)) = Tθ (y(x,λn)) = σ, Tθ (z(x,λ)) = Tθ (z(x,λn)) = –σ and
(.) together with (.) yields

〈
G(·,λ),Y(·,λn)

〉
E

=

p

∫ 

–
G(x,λ)y(x,λn) dx

+


p

∫ 


G(x,λ)y(x,λn) dx + σk–

n y(ξ,λ) + σz(ξ,λ). (.)

Thus from (.) in (.), we obtain

〈
G(·,λ),Y(·,λn)

〉
E

=
�(λ)
λn – λ

y(ξ,λn). (.)

Taking the limit when λ −→ λn in (.), we get

F (λn) = lim
λ→λn

〈
G(·,λ),F(·)〉

E
= lim

λ→λn

∞∑
k=–∞

〈
G(·,λ),Y(·,λk)

〉
E

〈Y(·,λk),F(·)〉E
‖Y(·,λk)‖

E

. (.)
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Making use of (.), we may rewrite (.) as, ξ ∈ [–, ) ∪ (, ],

F (λn) =

[
F(λn)
F(λn)

]
=

⎡
⎣limλ→λn

∑∞
k=–∞

�(λ)
λk –λ

y(ξ,λk) 〈Y(·,λk ),F(·)〉E
‖Y(·,λk )‖

E

limλ→λn

∑∞
k=–∞

�(λ)
λk –λ

y(ξ,λk) 〈Y(·,λk ),F(·)〉E
‖Y(·,λk )‖

E

⎤
⎦

=

⎡
⎣–�′(λn)y(ξ,λn) 〈Y(·,λn),F(·)〉E

‖Y(·,λn)‖
E

–�′(λn)y(ξ,λn) 〈Y(·,λn),F(·)〉E
‖Y(·,λn)‖

E

⎤
⎦ . (.)

The interchange of the limit and summation is justified by the asymptotic behavior of
Y(x,λn) and that of �(λ). If y(ξ,λn) �=  and y(ξ,λn) �= , then (.) gives

〈F(·),Y(·,λn)〉E
‖Y(·,λn)‖

E

= –
F(λn)

�′(λn)y(ξ,λn)
,

〈F(·),Y(·,λn)〉E
‖Y(·,λn)‖

E

= –
F(λn)

�′(λn)y(ξ,λn)
.

(.)

Combining (.), (.) and (.) we get (.) under the assumption that y(ξ,λn) �= 
and y(ξ,λn) �=  for all n. If yi(ξ,λn) = , for some n, i =  or , the same expansions hold
with Fi(λn) = . The convergence properties as well as the analytic and growth properties
can be established as in Theorem . above. �

Now we derive an example illustrating the previous results.

Example . The boundary value problem

y′
 – q(x)y = λy, y′

 + q(x)y = –λy, x ∈ [–, ) ∪ (, ], (.)

y(–) = λy(–), y() = –λy(), (.)

y
(
–) – y

(
+) = , y

(
–) – y

(
+) = , (.)

is a special case of problem (.)-(.) when ω = , ν = –, ω = ν = , p = p = , γ =
δ = , γ = δ = , θ = θ = π

 and q(x) = q(x) = q(x),

q(x) =

⎧⎨
⎩

, – ≤ x < ,

,  < x ≤ .

In the notations of equations (.) and (.), the solutions y(·,λ) and z(·,λ) of (.)-
(.) are

y(x,λ) = cos
[
(λ + )(x + )

]
– λ sin

[
(λ + )(x + )

]
,

y(x,λ) = λ cos
[
(λ + )(x + )

]
+ sin

[
(λ + )(x + )

]
,

(.)

y(x,λ) = cos
[
 + λ(x + )

]
– λ sin

[
 + λ(x + )

]
,

y(x,λ) = λ cos
[
 + λ(x + )

]
+ sin

[
 + λ(x + )

]
,

(.)

z(x,λ) = λ sin
[
λ – (λ + )x

]
– cos

[
λ – (λ + )x

]
,

z(x,λ) = sin
[
λ – (λ + )x

]
+ λ cos

[
λ – (λ + )x

]
,

(.)
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Figure 1 The eigenvalues of �(λ).

z(x,λ) = λ sin
[
λ( – x)

]
– cos

[
λ( – x)

]
,

z(x,λ) = sin
[
λ( – x)

]
+ λ cos

[
λ( – x)

]
.

(.)

The eigenvalues are the solutions of the equation

�(λ) = λ cos[λ + ] –
(
λ – 

)
sin[λ + ]. (.)

As is clearly seen, eigenvalues cannot be computed explicitly. Hence the eigenvalues are
the points of R which are illustrated in Figure .

Green’s matrix of problem (.)-(.) is given by

G(x, ξ ,λ) =


λ cos[λ + ] – (λ – ) sin[λ + ]

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(x, ξ ,λ), – ≤ ξ ≤ x < ,

G(x, ξ ,λ), – ≤ x ≤ ξ < ,

G(x, ξ ,λ), – ≤ ξ < ,  < x ≤ ,

G(x, ξ ,λ), – ≤ x < ,  < ξ ≤ ,

G(x, ξ ,λ),  < ξ ≤ x ≤ ,

G(x, ξ ,λ),  < x ≤ ξ ≤ ,

(.)

where

G(x, ξ ,λ) =



[
(λ – ) cos[ϑ] + λ sin[ϑ] – (λ + ) cos[ϑ]
( – λ) sin[ϑ] + λ cos[ϑ] – (λ + ) sin[ϑ]

(λ – ) sin[ϑ] – λ cos[ϑ] – (λ + ) sin[ϑ]
(λ – ) cos[ϑ] + λ sin[ϑ] + (λ + ) cos[ϑ]

]
,
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G(x, ξ ,λ) =



[
(λ – ) cos[ϑ] + λ sin[ϑ] – (λ + ) cos[ϑ]
(λ – ) sin[ϑ] – λ cos[ϑ] – (λ + ) sin[ϑ]

( – λ) sin[ϑ] + λ cos[ϑ] – (λ + ) sin[ϑ]
(λ – ) cos[ϑ] + λ sin[ϑ] + (λ + ) cos[ϑ]

]
,

G(x, ξ ,λ) =



[
(λ – ) cos[ϑ] + λ sin[ϑ] – (λ + ) cos[ϑ]
( – λ) sin[ϑ] + λ cos[ϑ] + (λ + ) sin[ϑ]

(λ – ) sin[ϑ] – λ cos[ϑ] + (λ + ) sin[ϑ]
(λ – ) cos[ϑ] + λ sin[ϑ] + (λ + ) cos[ϑ]

]
,

G(x, ξ ,λ) =



[
(λ – ) cos[ϑ] + λ sin[ϑ] – (λ + ) cos[ϑ]
(λ – ) sin[ϑ] – λ cos[ϑ] + (λ + ) sin[ϑ]

( – λ) sin[ϑ] + λ cos[ϑ] + (λ + ) sin[ϑ]
(λ – ) cos[ϑ] + λ sin[ϑ] + (λ + ) cos[ϑ]

]
,

G(x, ξ ,λ) =



[
(λ – ) cos[ϑ] + λ sin[ϑ] – (λ + ) cos[ϑ]
( – λ) sin[ϑ] + λ cos[ϑ] – (λ + ) sin[ϑ]

(λ – ) sin[ϑ] – λ cos[ϑ] – (λ + ) sin[ϑ]
(λ – ) cos[ϑ] + λ sin[ϑ] + (λ + ) cos[ϑ]

]
,

G(x, ξ ,λ) =



[
(λ – ) cos[ϑ] + λ sin[ϑ] – (λ + ) cos[ϑ]
(λ – ) sin[ϑ] – λ cos[ϑ] – (λ + ) sin[ϑ]

( – λ) sin[ϑ] + λ cos[ϑ] – (λ + ) sin[ϑ]
(λ – ) cos[ϑ] + λ sin[ϑ] + (λ + ) cos[ϑ]

]
,

ϑ := ϑ(x, ξ ,λ) = (λ + )(ξ – x) + λ + , ϑ := ϑ(x, ξ ,λ) = (λ + )(ξ + x) + ,

ϑ := ϑ(x, ξ ,λ) = (λ + )(x – ξ ) + λ + , ϑ := ϑ(x, ξ ,λ) = λ – λx – (λ + )(ξ + ),

ϑ := ϑ(x, ξ ,λ) = λ – λx + (λ + )(ξ + ), ϑ := ϑ(x, ξ ,λ) = λ – (λ + )(x + ) – λξ ,

ϑ := ϑ(x, ξ ,λ) = λ + (λ + )(x + ) – λξ , ϑ := ϑ(x, ξ ,λ) = λ(ξ + x) + ,

ϑ := ϑ(x, ξ ,λ) = λ(ξ – x) + λ + , ϑ := ϑ(x, ξ ,λ) = λ(x – ξ ) + λ + .

By Theorem ., the transform

F(λ) =
∫ 

–

[
f(x)

(
cos
[
(λ + )(x + )

]
– λ sin

[
(λ + )(x + )

])

+ f(x)
(
λ cos

[
(λ + )(x + )

]
+ sin

[
(λ + )(x + )

])]
dx

+
∫ 



[
f(x)

(
cos
[
 + λ(x + )

]
– λ sin

[
 + λ(x + )

])

+ f(x)
(
λ cos

[
 + λ(x + )

]
+ sin

[
 + λ(x + )

])]
dx (.)

has the following expansion:

F(λ) =
∞∑

n=–∞
F(λn)

λ cos[λ + ] – (λ – ) sin[λ + ]
(λn – λ)[(λ

n – ) cos(λn + ) + λn sin(λn + )]
, (.)
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where {λn}∞n=–∞ are the zeros of (.). In view of Theorem ., the vector-valued trans-
form

F (λ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[ λ sin[λ–(λ+)ξ]–cos[λ–(λ+)ξ]
sin[λ–(λ+)ξ]+λ cos[λ–(λ+)ξ]

]
� +

[ cos[(λ+)(ξ+)]–λ sin[(λ+)(ξ+)]
sin[λ–(λ+)ξ]+λ cos[λ–(λ+)ξ]

]
(� + �),

– ≤ ξ < ,[ λ sin[λ(–ξ)]–cos[λ(–ξ)]
sin[λ(–ξ)]+λ cos[λ(–ξ)]

]
(� + �) +

[ cos[+λ(ξ+)]–λ sin[+λ(ξ+)]
λ cos[+λ(ξ+)]+sin[+λ(ξ+)]

]
�,

 < ξ ≤ ,

(.)

where

� =
∫ ξ

–

[(
cos
[
(λ + )(x + )

]
– λ sin

[
(λ + )(x + )

])
f(x)

+
(
λ cos

[
(λ + )(x + )

]
+ sin

[
(λ + )(x + )

])
f(x)

]
dx,

� =
∫ 

ξ

[(
λ sin

[
λ – (λ + )x

]
– cos

[
λ – (λ + )x

])
f(x)

+
(
sin
[
λ – (λ + )x

]
+ λ cos

[
λ – (λ + )x

])
f(x)

]
dx,

� =
∫ 



[(
λ sin

[
λ( – x)

]
– cos

[
λ( – x)

])
f(x)

+
(
sin
[
λ( – x)

]
+ λ cos

[
λ( – x)

])
f(x)

]
dx,

� =
∫ 

–

[(
cos
[
(λ + )(x + )

]
– λ sin

[
(λ + )(x + )

])
f(x)

+
(
λ cos

[
(λ + )(x + )

]
+ sin

[
(λ + )(x + )

])
f(x)

]
dx,

� =
∫ ξ



[(
cos
[
 + λ(x + )

]
– λ sin

[
 + λ(x + )

])
f(x)

+
(
λ cos

[
 + λ(x + )

]
+ sin

[
 + λ(x + )

])
f(x)

]
dx,

� =
∫ 

ξ

[(
λ sin

[
λ( – x)

]
– cos

[
λ( – x)

])
f(x)

+
(
sin
[
λ( – x)

]
+ λ cos

[
λ( – x)

])
f(x)

]
dx.

The vector-valued transform (.) has the following vector-valued expansion:

F (λ) =

⎡
⎣F(λ) =

∑∞
n=–∞ F(λn) λ cos[λ+]–(λ–) sin[λ+]

(λn–λ)[(λ
n–) cos(λn+)+λn sin(λn+)]

F(λ) =
∑∞

n=–∞ F(λn) λ cos[λ+]–(λ–) sin[λ+]
(λn–λ)[(λ

n–) cos(λn+)+λn sin(λn+)]

⎤
⎦ . (.)
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