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OPEN

ORIGINAL ARTICLE

Brain age predicts mortality
JH Cole1, SJ Ritchie2,3, ME Bastin2,4, MC Valdés Hernández2,4, S Muñoz Maniega2,4, N Royle2,4, J Corley2,3, A Pattie2,3, SE Harris2,5,
Q Zhang6, NR Wray6,7, P Redmond3, RE Marioni2,5,7, JM Starr2, SR Cox2,3, JM Wardlaw2,4, DJ Sharp1 and IJ Deary2,3

Age-associated disease and disability are placing a growing burden on society. However, ageing does not affect people uniformly.
Hence, markers of the underlying biological ageing process are needed to help identify people at increased risk of age-associated
physical and cognitive impairments and ultimately, death. Here, we present such a biomarker, ‘brain-predicted age’, derived using
structural neuroimaging. Brain-predicted age was calculated using machine-learning analysis, trained on neuroimaging data from a
large healthy reference sample (N= 2001), then tested in the Lothian Birth Cohort 1936 (N= 669), to determine relationships with
age-associated functional measures and mortality. Having a brain-predicted age indicative of an older-appearing brain was
associated with: weaker grip strength, poorer lung function, slower walking speed, lower fluid intelligence, higher allostatic load
and increased mortality risk. Furthermore, while combining brain-predicted age with grey matter and cerebrospinal fluid volumes
(themselves strong predictors) not did improve mortality risk prediction, the combination of brain-predicted age and DNA-
methylation-predicted age did. This indicates that neuroimaging and epigenetics measures of ageing can provide complementary
data regarding health outcomes. Our study introduces a clinically-relevant neuroimaging ageing biomarker and demonstrates that
combining distinct measurements of biological ageing further helps to determine risk of age-related deterioration and death.

Molecular Psychiatry advance online publication, 25 April 2017; doi:10.1038/mp.2017.62

INTRODUCTION
As the global population ages, the burden of disease is
increasing.1 This has motivated research to understand the
biological links between ageing and disease risk. There is
substantial heterogeneity in how the ageing process affects
different individuals, indicating that people age at different rates,
due to both genetic and environmental influences. If the
biological characteristics of these different rates of ageing can
be measured, then biomarkers of individual differences in the
ageing process might help improve predictions of mortality and
morbidity. Such biomarkers could potentially identify those at risk
of age-associated health problems years before symptoms appear,
and be used as outcome measures in trials of therapeutics aimed
at delaying the onset of age-related disease. Many different
ageing biomarkers have been proposed, which tap into different
cellular and molecular aspects of ageing. For example, the so-
called ‘epigenetic clock’2,3 uses measurements of DNA-
methylation status at CpG sites across the genome, which can
be converted into an age prediction which correlates highly with
chronological age in healthy individuals. Other candidate ageing
biomarkers include leucocyte telomere length,4 N-glycan profile5

and Ink4a/Arf locus expression.6 This diverse list of candidate
ageing biomarkers reflects the involvement of multiple biological
systems and the overall complexity of the ageing process in
humans.7

Neurological aspects of ageing, such as cognitive decline and
dementia, are particularly deleterious to general health and well-
being.8 Brain structure is well-known to alter throughout life,9 and
deviations from this typical brain ageing trajectory, in terms of

increased brain atrophy for a given age, may well reflect latent
neuropathological influences. A reliable and valid brain-based
biomarker of ageing, that identifies individuals deviating from
a healthy brain ageing trajectory, could have great utility in
efforts to combat age-associated neurodegeneration and its
consequences.
Neuroimaging is a powerful tool for deriving in vivo data on the

ageing brain, demonstrating both global and spatially-localised
relationships with normal ageing,10,11 and with age-associated
cognitive decline.12–15 Recently, multivariate methods have been
developed to define statistical models of healthy brain ageing.
Using machine-learning analysis of neuroimaging data, chrono-
logical age can be accurately predicted in healthy individuals.16

This provides a method of measuring whether a person’s brain
appears younger or older than their chronological age. Using this
model, deviations from healthy brain ageing have been iden-
tified in Alzheimer’s disease,17 mild cognitive impairment,18

schizophrenia19 and have been related to cognitive impairment
after traumatic brain injury.20 Furthermore, protective factors have
been associated with a positive influence on brain ageing. For
example, years of education, physical exercise and practicing
meditation were recently linked to having younger-appearing
brains.21,22

As these multivariate neuroimaging measures have been
associated with age-related pathology and cognitive impairment,
this raises the possibility that brain-based age predictions could
be used as an ageing biomarker. A viable ageing biomarker must
relate to the risk of mortality and age-associated morbidity,23

particularly if it is to have clinical utility. To establish what the
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consequences of having a brain that appears older or younger
than average for one’s chronological age, we estimated ‘brain-
predicted age’ in a large, narrow age-range population cohort of
older adults (Lothian Birth Cohort 1936 (LBC1936), N= 669), using
structural neuroimaging (T1-weighted magnetic resonance ima-
ging (MRI)). We tested the association between brain-predicted
age difference (brain-PAD; calculated as brain-predicted age
minus chronological age) and: mortality risk, disease prevalence,
measures of physical and mental fitness (grip strength, walking
speed, lung function and general fluid intelligence), and a
composite measure of biological health (allostatic load). We
hypothesised that ‘older’ brain-PAD would be associated with
earlier mortality and more morbidity, poorer physical and
cognitive fitness, and greater allostatic load.
Further, it has been proposed that biological ageing occurs at

different rates to different tissues or cells within the same person,
the so-called ‘mosaic of ageing’.24 Hence, complementary
information could be gained by combining ageing biomarkers
derived from different sources. Conversely, if ageing occurs
uniformly across the body, then diverse ageing biomarkers should
correlate highly. Here we explored these possibilities by examin-
ing brain-predicted age in relation to molecular-genetic ageing
biomarkers. We tested brain-PAD in combination with DNA-
methylation-based age predictions using the ‘epigenetic-clock’3

and leukocyte telomere length, both previously associated with
mortality,25,26 examining their influence on the relationship with
age-related outcome measures. Finally, we considered how brain-
PAD related to more conventional imaging measures, previously
shown to relate to ageing.

MATERIALS AND METHODS
Full details of the participants, data acquisition and statistical methods
used in the study are included in Supplementary Methods.

Participants—Lothian Birth Cohort 1936
The LBC1936 is a longitudinal study of ageing based in the Edinburgh
and Lothians area of Scotland, UK.27,28 Most of the participants had
taken part in the Scottish Mental Survey of 1947, which involved a test of
general cognitive ability for almost all 11-year old children in the
country at that time.29 At the first wave, 1,091 participants attended for
cognitive and medical testing (mean age 70 years, 548 =male,
543 = female). MRI testing began at the second wave, when 866 individuals
attended for cognitive, medical testing (mean age 73 years, 448 =male,
418 = female), of whom 669 (352=male, 317 = female) had MRI. This final
cohort provided the data that were included in present analysis (Table 1).
The vast majority of participants were cognitively normal according to
mini-mental state examination, with 99.3% scoring ⩾ 24. Ethical approval
for the LBC1936 was obtained from the Multi-Centre Research Ethics
Committee for Scotland (MREC/01/0/56) and the Lothian Research Ethics
Committee (LREC/2003/2/29). Written informed consent was obtained
from all subjects.

Participants—brain-predicted age training cohort
Further 2001 healthy individuals (age mean= 36.95 ± 18.12 years; age
range= 18–90 years; males = 1016; females = 985) comprised the brain-
predicted age training cohort. These data were obtained via
publicly-available repositories (Supplementary Table 5) and were screened
according to local study protocols to ensure that they were
free of neurological and psychiatric disorders, had no history of head
trauma and other major medical conditions. Ethical approval for each
initial study and subsequent data sharing was verified for each data
repository.

Brain age prediction methods
The machine learning age-predictions methods using neuroimaging data
are outlined in Figure 1. Briefly, T1-weighted MRI scans were segmented
into grey matter (GM) and white matter (WM) before being normalised in
common space using non-linear spatial registration. Once normalised, GM

and WM images were concatenated and converted into a similarity matrix
of training subjects’ data, which to predict chronological age in a Gaussian
Process regression. Model accuracy was then validated using ten-fold
cross-validation, comparing brain-predicted age with chronological age.
The coefficients ‘learned’ from the full model (N= 2001) were then applied
to the test data (LBC1936, N=669) to make brain-based age predictions for
these individuals. Brain-PAD (predicted age—chronological age) was then
calculated and used for further statistical analysis.

Ageing fitness measures
Five measures of ‘fitness’, or a healthy ageing phenotype,30 in older age
were considered: walking speed (time to walk 6 metres), right-hand grip
strength (measured by a dynamometer), lung function (forced expiratory
volume in 1 s), cognitive function (fluid-type intelligence) and allostatic
load.31 Allostatic load was derived from measures of: fibrinogen,
triglyceride, high-density lipoprotein, low-density lipoprotein, total choles-
terol, cholesterol high-density lipoprotein ratio, glycated haemoglobin,
C-reactive protein, interleukin-6, body-mass index and blood pressure. All
measures used in the present analysis were collected at the same time as
the neuroimaging assessment.

Mortality ascertainment
Mortality status was obtained via data linkage to the National Health
Service Central Register, provided by the National Records of Scotland.
The LBC1936 research team are routinely informed of participant
deaths and cause of death approximately every 12 weeks. Most
recent ascertainment was at approximately age 79 years (range 78.7–
79.7 years), which was between 5.4 and 7.9 years after neuroimaging
assessment.

Molecular genetic biomarkers of ageing
Using whole blood samples, data for two candidate ageing biomarkers
were generated. The ‘epigenetic clock’3 was used to calculate predictions
of age based on DNA-methylation status at 450, 726 autosomal sites across
the genome, as per the previously reported ‘Horvath’ protocol.26,32

Leukocyte telomere length was measured using a protocol developed at
University of Newcastle.33

RESULTS
Chronological age can be predicted using neuroimaging
A machine-learning model (Gaussian Processes), trained on the
brains of N= 2001 healthy adults, aged 18–90 years, can accurately
predict chronological age using T1-weighted MRI scans

Table 1. Lothian Birth Cohort 1936 characteristics

All Male Female

N 669 352 317
Age 72.67 (0.73) 72.63 (0.71) 72.72 (0.74)
Mini-mental state
examination
(median (IQR))

29 (2) 29 (2) 29 (2)

Brain-predicted age 74.32 (8.72) 76.92 (8.64) 71.43 (7.88)
Brain-PAD 1.65 (8.71) 4.29 (8.58) − 1.29 (7.87)
gf 0.03 (0.98) 0.01 (1.05) 0.06 (0.90)
Grip strength 28.79 (9.33) 35.38 (6.71) 21.45 (5.63)
FEV1 (l) 2.34 (0.68) 2.72 (0.62) 1.92 (0.44)
6 metre walk time (s) 4.29 (1.21) 4.09 (1.11) 4.51 (1.27)
Allostatic load − 0.03 (0.99) 0.09 (0.95) −0.15 (1.02)
Deceased (N)a 73 43 30

Abbreviations: brain-PAD, brain-predicted age difference; FEV, forced
expiratory volume in one second; gf, fluid type general intelligence; IQR,
inter-quartile range. aMortality was ascertained between 5.4 and 7.9 years
after neuroimaging assessment. Values reported are mean (s.d.) unless
otherwise specified.
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(Figure 2a). Cross-validation results gave a correlation between
brain-predicted age and chronological age of r= 0.94, (Po0.001,
corrected after 1000 permutations) and explained 88% of the
variance (R2). The mean absolute error of prediction was 5.02 years
and the root mean square error was 6.31 years. This training stage
validated our model of brain-predicted age, for use in predicting
age with neuroimaging data collected in other samples.

Older adults show marked variation in structural brain ageing
The model coefficients ‘learned’ from the training dataset were
applied to T1-weighted MRI scans acquired from the LBC1936
participants (Table 1) to generate a brain-predicted age. At the
time of scanning LBC1936 participants had a mean chronological
age of 72.67 (s.d. = 0.73) years and a mean brain-predicted age of
74.32 (s.d. = 8.72) years. The mean absolute error of age prediction
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in the LBC1936 participants was 7.08 years and the root mean
square error was 8.85 years. The variability in brain-predicted age
was considerably greater than the variability in chronological age,
reflecting marked individual differences in brain structure in
participants aged approximately 73 (Figure 2b). As expected,
brain-PAD scores did not correlate with chronological age
(r=− 0.01, P= 0.79), indicating that deviations from healthy brain
ageing (that is, having an older- or younger-appearing brain) were
not related to underlying chronological age. Females’ brain-
predicted ages were, on average, younger than their chronological
age (mean (s.d.) brain-PAD=− 1.29 (7.87) years), whereas males’
were older (mean (s.d.) brain-PAD= 4.29 (8.58) years). This sex
difference was statistically significant (Wilcoxon rank-sum test,
W= 35431, Po0.001), hence sex was included as a covariate in all
further analyses.

Early mortality is associated with older-appearing brains
Having a higher brain-PAD score (that is, a brain that appears
older than one’s chronological age) was significantly associated
with mortality before the age of 80 (Po0.001); up to seven years
after neuroimaging assessment. Mean brain-PAD score for
deceased males (N= 43) and females (N= 30) was 8.13 (s.d. =
9.52) and 2.07 (s.d. = 9.27) years, respectively, compared to 3.76
(s.d. = 8.32) and − 1.64 (s.d. = 7.65) years for surviving males and
females (Figure 3). The relationship between mortality risk and
brain-PAD was tested using Cox proportional hazards regression
analysis, adjusting for age and sex. Survival was ascertained up to
7.9 years post-neuroimaging, and survival duration was right-
censored for surviving individuals based on days between
neuroimaging assessment and mortality ascertainment. Each extra
year of brain-predicted age (that is, having a brain-PAD score of
+1) resulted in a 6.1% relative increase in the risk of death
between age 72 and 80 (hazard ratio (HR) = 1.061, 95% confidence
interval (CI) = 1.031, 1.091, Po0.001). The assumptions of propor-
tional hazards were met by the model. An illustrative Kaplan–
Meier plot using the upper and lower tertiles of brain-PAD scores
in LBC1936 participants is shown in Figure 2b. The influence of

other variables previously related to mortality in this sample was
considered in a fully-adjusted model, as per Marioni and
colleagues.26 These were: Moray House Test IQ-type score at
age 11, paternal social class (five-point scale), years of full-time
education, APOE e4 carrier status, smoking status (never,
ex-smoker, current smoker), and self-reported hypertension,
diabetes and cardiovascular disease. Brain-PAD remained signifi-
cantly associated with mortality risk in this fully-adjusted model,
with a slight attenuation of the effect size (HR = 1.051, 95%
CI = 1.020, 1.083, Po0.001; Supplementary Table S1).

Variability in apparent brain-ageing relates to physical and mental
fitness
Brain-PAD score was also significantly related to a number of
measures that reflect characteristics of physical and mental fitness
in older age using linear regression (Supplementary Table 2). An
older-appearing brain, as indicated by a higher brain-PAD score,
was significantly associated with lower fluid cognitive perfor-
mance (standardised beta =− 0.121, P= 0.007), weaker grip
strength (standardised beta =− 0.060, P= 0.020), poorer lung func-
tion (standardised beta =− 0.072, P= 0.020) and slower walking
speed (standardised beta = 0.133. P= 0.004). Higher brain-PAD
score was also associated with higher allostatic load (standardised
beta = 0.097, P= 0.020), a composite measure of biological and
physiological parameters, designed to reflect biological ‘wear-and-
tear’ accumulated over a lifetime of stress adaptation. Reported
P-values were corrected for five tests using a 5% false discovery
rate.

Brain-PAD is not related to the prevalence of morbidity
Next, we examined the relationship between brain-PAD and the
presence of self-reported cardiovascular disease, stroke, and
diabetes. LBC1936 participants reported the following prevalence
of disease: cardiovascular disease = 26.9% (N= 180), diabetes =
10.2% (N= 68) and a history of stroke = 6.9% (N= 46). After
adjusting for sex, there was no significant association between
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brain-PAD score and cardiovascular disease (P= 0.08), diabetes
(P= 0.14) or stroke (P= 0.85).

Brain-PAD is not related to childhood IQ, life-course social factors
or APOE e4 status
Brain-PAD was also not associated with potential life-course
influences on ageing. Potential influences tested were: perfor-
mance on the Moray House Test at age 11 (P= 0.63), paternal
social class (P= 0.82), years of education (P= 0.45), neighbourhood
deprivation as indexed by the Scottish Index of Multiple
Deprivation (P= 0.45), and the presence of an APOE e4 allele
(P= 0.88).

Brain-PAD and conventional neuroimaging measures in relation to
survival
Brain-PAD was significantly correlated (positively or negatively)
with: GM, normal-appearing white matter, cerebrospinal fluid (CSF)
and WM hyperintensity volume, whole brain cortical thickness,
fractional anisotropy and mean diffusivity (Supplementary Figure 1).
When combining brain-PAD with these imaging measures to
predict outcomes, brain-PAD contributed unique variance (deter-
mined using hierarchical variance partitioning) to each linear
regression model (Supplementary Table 2). Although brain-PAD
was not always the greatest contributor of unique variance to
outcome prediction, this analysis indicates that brain-PAD can add
complementary information to models of age-related outcomes,
over and above that gained from conventional neuroimaging
measures. Further, we assessed whether GM, normal-appearing
white matter and CSF volume were associated with survival. Cox
regression analyses, adjusted for age and sex, indicated that GM
and CSF volume (in ml) were associated with survival (GM:
HR= 0.991, 95% CI = 0.984, 0.998, P= 0.007; CSF: HR = 1.012, 95%
CI = 1.007, 1.017, Po0.001), where a having 1 ml lower GM or 1 ml
higher CSF volume was associated with a 1% increase in mortality
risk. Normal-appearing white matter volume was not associated
with mortality risk (P= 0.54). We then compared the predictive
value of linear combinations of brain-PAD with GM and CSF
volume in Cox regression models (that is., brain-PAD+GM volume,
brain-PAD+CSF volume, brain-PAD+GM volume+CSF volume).
Brain-PAD significantly related to survival in the paired combined
models (Po0.05), indicating that it independently explained some
variance relating to survival, when combined with GM volume or
with CSF volume separately. However, when included alongside
both GM volume and CSF volume, brain-PAD was no longer a
significant predictor of survival (P= 0.12), while the volumetric
measures remained significant (GM: z=− 3.78, Po0.001; CSF:
z= 4.56, Po0.001). For full details see Supplementary Table 3.

Brain-PAD combined with DNA-methylation ‘age’ improves
survival modelling
Molecular genetic ageing biomarkers have also been proposed,
hence we compared brain-PAD with DNA-methylation status and
leukocyte telomere length. DNA-methylation (DNAm) age was
predicted using Horvath’s ‘epigenetic clock’ method,3 in N= 620
(female = 290, male = 330) participants, who had undergone
neuroimaging assessment. Mean DNAm-predicted age was 69.3
(s.d. = 6.2) years. Mean DNAm-predicted age difference (DNAm-
PAD) was − 3.4 (s.d. = 6.1) years. Mean DNAm-PAD was similar for
males (−3.2, s.d. = 5.8) and females (−3.7, s.d. = 6.4), with no
statistically significant sex difference (W= 44803, P= 0.17). There
was no association between the DNAm-predicted age and brain-
predicted age (rho = 0.001, P= 0.98) or between brain-PAD and
DNAm-PAD (rho =− 0.007, P= 0.85). Regarding telomere length,
data were available in N= 653 participants (female = 309, male =
344) with neuroimaging data. Telomere mean (s.d.) length was
3982.5 (711.7) base-pairs. Telomere length in females was 4045.5

(635.2) base-pairs, while for males it was 3912.3 (783.3) base-pairs,
which was significantly different (W= 45386, P= 0.001). There was
no significant association between telomere length and brain-PAD
(rho= 0.04, P= 0.31) or brain-predicted age (rho= 0.05, P= 0.23).
Combining DNAm-PAD and telomere length with brain-PAD in

a multivariate Cox regression, adjusted for age and sex,
significantly predicted survival (N= 608, deceased N= 67,
Po0.001). Within this model, brain-PAD (HR= 1.07, 95% CI = 1.04,
1.11, Po0.001) and DNAm-PAD (HR= 1.06, 95% CI = 1.02, 1.10,
Po0.001) were significant contributors to the prediction, while
telomere length was not (P= 0.97). A separate model using DNAm-
PAD alone also significantly predicted survival (HR = 1.06, 95%
CI = 1.02, 1.09, Po0.001); however, this explained significantly less
variance than a model using brain-PAD alone (AUC= 0.59 vs brain-
PAD alone AUC= 0.66, Po0.001). The combined model using
brain-PAD and DNAm-PAD explained significantly more variance
than either variable alone (combined model AUC= 0.69 vs brain-
PAD alone AUC= 0.66 vs DNAm-PAD alone AUC= 0.59, Po0.001;
see Figure 2c, Supplementary Table 4). This was also the case for
the fully-adjusted model covarying for potential influences on
mortality risk. Prediction of ageing fitness measures was not
improved when combining brain-PAD and DNAm-PAD or brain-
PAD and telomere length.

DISCUSSION
Here we showed that a neuroimaging-based marker of brain
ageing is associated with a greater risk of death and poorer
physical and cognitive fitness in a large cohort of older adults.
Furthermore, we demonstrate that combining biological age
predictions generated from neuroimaging and DNA-methylation
status data increases the accuracy of survival modelling. At ~ 73
years of age, we found that people with brains that appeared
older than their chronological age had, in addition to greater
mortality risk: weaker grip strength, poorer lung function, slower
walking speed, lower fluid general intelligence, and had been
exposed to greater allostatic load (a biological measure intended
to summarise the cumulative effects of lifetime biological ‘wear
and tear’). The relationship between brain-PAD and survival was
independent of life-course influences on mortality including:
education, social class, childhood IQ, carrying an APOE e4 allele or
the presence of age-associated illness. Furthermore, these factors
were themselves not significantly associated with brain-PAD in
this sample.
To the best of our knowledge, this is the first demonstration

that a neuroimaging-derived age prediction is associated with
higher mortality risk. Such measures have been used in clinical
samples, showing increased apparent brain age following trau-
matic brain injury20 and in individuals with mild cognitive, a key
risk factor for Alzheimer’s Disease.18 Higher levels of exercise21

and meditation22 have been associated with lower brain age in
the healthy population, but the link with mortality is novel. This is
crucial, as it supports the use of MRI as a screening tool to help
identify people at greater risk of general functional decline and
mortality during ageing. Brain-PAD has the potential to be
estimated in large numbers of people, as MRI is collected routinely
in clinical settings. The success of projects like UK Biobank34 shows
that acquiring MRI on a very large scale is feasible given the
appropriate infrastructure.
The combination of DNA-methylation-predicted age and

neuroimaging-predicted age is also novel. We found that, while
brain-predicted age significantly out-performed DNA-methylation
predicted age, there is greater added value gained when
combining these two approaches to predict survival. Previously,
‘DNA-methylation age’ has been related to mortality and
ageing fitness,26,32 and in various clinical contexts including
HIV,35 Down’s Syndrome36 and obesity.37 Interestingly, brain-PAD
and DNAm-PAD were not correlated, yet both related to survival

Brain age predicts mortality
JH Cole et al

5

Molecular Psychiatry (2017), 1 – 8



independently and improved survival prediction when analysed in
combination, thus provided complementary information. This
demonstrates that contrasting approaches to estimating age
biologically can be integrated to predict clinically-relevant out-
comes. Seemingly, epigenetic ageing in leukocytes and ageing
of brain structure are occurring independently, perhaps evidence
for a ‘mosaic’ of ageing,24 where biological ageing occurs at
different rates in different systems or compartments within an
individual. This motivates further research that combines inde-
pendent measures of biological ageing to develop a more global
ageing biomarker, which may further improve predictions of
survival.
Other neuroimaging measures have previously been associated

with mortality in older adult population cohorts. These include
WM hyperintensities in adults aged 70–82 years,38 regional
volume reductions at age 85 years39 and whole brain volume at
78–85,40 66–9041 and 60–90 years.42 Visual assessment of infarcts,
WM hyperintensities and atrophy also predicted mortality
6 months after a stroke.43 This research supports the idea that
the brain plays a central role in the ageing process and is sensitive
to the cumulative damage that accrues throughout life and
increases mortality risk. That we can predict mortality before the
age of 80 using neuroimaging assessment at approximately age
73, fits with these previous reports.
Interestingly, when combining brain-PAD with GM and CSF

volume in a Cox regression, brain-PAD no longer significantly
predicted survival. This indicates that the survival-related variance
in brain-PAD can be captured using more conventional volumetric
measures. While brain-PAD did incrementally improve survival
prediction over individual volumetric measures, our results
indicate that using a combination of GM and CSF volume is
potentially a strong biomarker of mortality. Nevertheless, these
volumetric measures appear less suitable as an ageing biomarker
per se, as a linear model of GM, WM and CSF volume explained
only 66% of variance in chronological age (mean absolute
error = 8.30 years, root mean square error = 10.53) in the training
dataset, compared with 88% using brain-predicted age. This
demonstrates that in the context of developing an ageing
biomarker, there is benefit in using a machine-learning approach
to analyse high-dimensional voxelwise T1-MRI data, compared to
macroscopic volume measurements. Future steps to further
improve models of brain ageing and derived ageing biomarkers
could incorporate additional imaging modalities at the modelling
stage. This should capture further age-associated changes
including WM hyperintensities using FLAIR-MRI, altered WM
microstructure using diffusion-MRI and beta-amyloid deposition
using positron emission tomography.
A key medical research goal is to identify reliable predictors of

mortality, proxy measures of underlying pathological processes
that increase mortality risk. For example, grip strength has been
robustly associated with mortality,44,45 and is thought to be a
proxy of the musculo-skeletal system. Similarly, brain-PAD may be
a general reflection of CNS health. Grip strength measures do not
necessarily require a direct causal link with cardiovascular or all-
cause mortality to be clinically useful;46 the same could apply to
brain-PAD. Moreover, the relevance of brain-predicted age for
health is intuitively straightforward. Already, the UK National
Health Service encourages people to complete a cardiovascular
health question to determine their ‘heart age’ (www.nhs.uk/
Conditions/nhs-health-check/Pages/check-your-heart-age-tool.
aspx). By analogy, ‘brain age’, or a global ‘biological age’, could be
used in public health settings to convey complex information to
patients in readily comprehendible terms.
Brain-PAD related to all measures of ageing fitness. This

suggests that our measure of brain ageing relates to some
more general facets of physiological ageing. Along with grip
strength, all these measures (lung function, gait speed, cognitive
function and allostatic load) have been previously associated

with mortality.47–50 As proxies for systemic health (for example,
musculo-skeletal, respiratory, nervous, circulatory), they appear to
relate to a common aspect of more general health of the whole
body, likely due to the interactions between different human
biological systems. However, there also seems to be unique
variance in the relationship of these measures with mortality. This
is supported by our finding that survival modelling accuracy was
improved when including multiple ageing fitness measures
alongside brain-PAD. Notably, brain-PAD remained the strongest
predictor in this combined model, which justifies further research
into the clinical applications of neuroimaging-based predictors of
mortality.
Our study has some strengths and weaknesses, particularly

relating to the cohorts under study. The sample size for both
training and test sets is relatively large. One potential limitation is
the multiple sources of training data. Comprehensive demo-
graphic data were not available on all these individuals. However,
individuals in this sample were screened according to various
criteria to ensure that were free of manifest neurological,
psychiatric or major medical health issues. The LBC1936 is well-
characterised, allowing a broad exploration of relationships with
brain-predicted ageing, particularly the follow-up to assess
mortality. The limited age range of LBC1936 participants is a
strength in that it eliminates the important confounding effect of
chronological age, but it may limit generalisations to other age
groups. However, this point in the life course is a timely juncture
to assess brain ageing as individual differences have had time to
accumulate though are unlikely to be widely confounded by
manifest neurodegenerative disease. The current analysis was
cross-sectional; therefore, we cannot determine whether the
relationship between brain-predicted age and mortality risk varies
with age or where on the trajectory of atrophy an individual is. The
on-going nature of the LBC1936 study will allow future analysis of
longitudinal data to determine whether trajectories of brain
ageing are better indicators of future health outcomes than cross-
sectional measures. In addition, we only assessed all-cause
mortality, which limits speculation about causal relationships
between brain structural alterations and specific mortality causes,
such as cardiovascular or neurological causes of death. Finally, the
LBC1936 participants were not fully representative of the
population from which they were drawn. Compared to the full
population who sat the cognitive test at age 11, LBC1936
participants had higher cognitive ability,27 and in later life were
likely to be healthier than their peers in the general population.
This may have been due to selection effects seen in most studies
of ageing. That our sample might have missed individuals with
particularly poor health or high frailty. Hence we might have
underestimated some of the effects reported here, as a small
number of individuals with worse performance on measures of
ageing fitness may not have been included.
The difference between neuroimaging-predicted age and

chronological age is associated with survival in a large sample
of older adults and relates to measures of cognitive and physical
fitness. Moreover, combining age-predictions from DNAm and
neuroimaging data increased the accuracy of survival modelling.
This study provides evidence that neuroimaging data can be used
to construct a viable ageing biomarker, and potentially provides
important prognostic information, particularly in combination with
complementary epigenetic ageing data. A global biomarker of
ageing has the potential to screen for asymptomatic individuals
who are experiencing adverse ageing and thus are at increased
risk of future ill-health and could be used as a surrogate outcome
measure in clinical trials of neuroprotective treatments and anti-
ageing therapeutics.
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