115 research outputs found
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
The Central Limit Theorem for Random Dynamical Systems
We consider random dynamical systems with randomly chosen jumps. The choice of deterministic dynamical system and jumps depends on a position. The Central Limit Theorem for random dynamical systems is established
Environmentally controlled phenotypic plasticity of morphology and polypeptide expression in two populations of Daphnia pulex (Crustacea: cladocera)
Two local Daphnia pulex populations which are subject to different types of seasonally varying predation pressures were studied. Individuals from both populations were raised in laboratory environments which simulated either summer or winter temperatures and photoperiods. When individuals from the same parthenogenetic clone were raised in different seasonal environments, each clone exhibited phenotypic variation specific to each of the seasonal environments. Intraclonal phenotypic plasticity was found in both populations at two different levels: variation in morphological characters, and variation in the expressed polypeptide phenotypes. Summer environmental conditions induced predator-resistant morphological traits, while winter conditions induced predator-susceptible ones. From 65% to 71% of over 200 major polypeptides were specifically expressed in either one seasonal environment or the other. This is evidence for the existence of environmentally induced switching between alternate developmental programs. Clones from the population with the least year to year predictability of seasonal predation pressure showed more interclonal variation in environment specific phenotypic expression than clones from the more predictably fluctuating environment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47754/1/442_2004_Article_BF00379879.pd
Alignment of the ALICE Inner Tracking System with cosmic-ray tracks
37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe
Solutions to a measured-valued mass evolution problem with flux boundary conditions inspired by crowd dynamics
Motivated by our research on pedestrian flows, we study a non-conservative measure-valued evolution problem posed in a finite interval and explore the possibility of imposing a flux boundary condition. The main steps of our work include the analysis of a suitably scaled regularized problem possessing a boundary layer that accumulates mass and detailed investigations of the boundary layer by means of semigroup techniques in spaces of measures. We consider passage to the singular limit where thickness of the layer vanishes (resembling the fast reaction asymptotics typical for systems with slow transport and rapid reactions). We obtain not only suitable solutions to the measured-value evolution problem, but also derive a convergence rate for the approximation procedure as well as the structure of (flux) boundary conditions for the limit problem
Paradoxical Ca2+ rises induced by low external Ca2+ in rat hippocampal neurones
Confocal Ca2+ imaging of rat hippocampal slices shows a paradoxical effect of acute reductions of the [Ca2+]o. Upon slice perfusion with low-Ca2+ media, a prompt intracellular Ca2+ rise selectively occurs in neurones. This response is observed only in slices challenged with agonists of group I metabotropic glutamate or M1 muscarinic receptors. In contrast, the intracellular Ca2+ level of non-stimulated neurones is insensitive to reductions of [Ca2+]o. The phenomenon is observed in 20–25 % of cultured cortical neurones. Evidence is provided demonstrating that: (1) this paradoxical response is not due to a non-specific decrease in divalent cation concentration but it is selectively activated by a reduction in [Ca2+]o, being maximal with [Ca2+]o between 0.25 and 0.5 mm; (2) upon maximal stimulation, 70–90 % of CA1-CA3 pyramidal neurones sense a reduction in [Ca2+]o; a weaker response is observed in neurones from the neocortex, whereas neurones from the dentate gyrus and granule cells from the cerebellum fail to respond; (3) conditions that elicit paradoxical Ca2+ responses cause depolarisation and increase the firing rate of hippocampal neurones; (4) paradoxical Ca2+ rises depend, primarily, on Ca2+ influx through L-type voltage-operated Ca2+ channels and to a lesser extent on release from intracellular Ca2+ stores. Inhibition of phospholipase C or protein kinase C failed to suppress the neuronal response, whereas a selective inhibitor of the Src-family of tyrosine kinases abolishes the paradoxical neuronal Ca2+ rise. A model is presented to explain how this response is elicited by contemporaneous reduction of the [Ca2+]o and metabotropic receptor stimulation; implications for the pathophysiology of the CNS are also discussed
- …