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Abstract We consider random dynamical systems with randomly chosen jumps. The choice
of deterministic dynamical system and jumps depends on a position. The Central Limit
Theorem for random dynamical systems is established.
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1 Introduction

The main goal of the paper is to prove the Central Limit Theorem (CLT) for Markov oper-
ator generated by random dynamical systems. The existence of an exponentially attractive
invariant measure was proven by Horbacz and Ślȩczka [19].

Random dynamical systems [15,17] take into consideration some very important and
widely studied cases, namely dynamical systems generated by learning systems [1,20,22,
29], iterated function systems with an infinite family of transformations [37,38], Poisson
driven stochastic differential equations [16,35,36], randomevolutions [11,32] and irreducible
Markov systems [41], used for the computer modelling of different stochastic processes.

A large class of applications of such models, both in physics and biology, is worth men-
tioning here: the shot noise, the photo conductive detectors, the growth of the size of structural
populations, the motion of relativistic particles, both fermions and bosons (see [10,23,26]),
the generalized stochastic process introduced in the recent model of gene expression by
Lipniacki et al. [30] see also [3,14,18]. The results bring some information important from
biological point of view. On the other hand, it should be noted that most Markov chains,
appear among other things, in statistical physics, and may be represented as iterated function
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1262 K. Horbacz

systems (see [24]), for example iterated function systems have been used in studying invari-
ant measures for the Waźewska partial differential equation which describes the process of
the reproduction of red blood cells [27].

In our paper we base on coupling methods introduced in Hairer [12]. In the same spirit,
the Central Limit Theorem was proven by Hille, Horbacz, Szarek and Wojewódka [13] for
a stochastic model for an autoregulated gene. Komorowski and Walczuk studied Markov
processes with the transfer operator having spectral gap in theWasserstein metric and proved
the CLT in the non-stationary case [25].

Properly constructed couplingmeasure, if combinedwith the results for stationary ergodic
Markov chains given byMaxwell andWoodroofe [31], is also crucial in the proof of the CLT.
If we have the coupling measure already constructed, the proof of the CLT is brief and less
technical then typical proofs based on Gordin’s martingale approximation.

The aim of this paper is to study stochastic processes whose paths follow deterministic
dynamics between random times, jump times, at which they change their position randomly.
Hence, we analyse stochastic processes in which randomness appears at times τ0 < τ1 <

τ2 < . . . We assume that a point x0 ∈ Y moves according to one of the dynamical systems
Ti : R+ × Y → Y from some set {T1, . . . , TN }. The motion of the process is governed by
the equation X (t) = Ti (t, x0) until the first jump time τ1. Then we choose a transformation
qθ : Y → Y froma set {q1, . . . , qK } anddefine x1 = qθ (Ti (τ1, x0)). The process restarts from
that new point x1 and continues as before. This gives the stochastic process {X (t)}t≥0 with
jump times {τ1, τ2, . . .} and post jump positions {x1, x2, . . .}. The probability determining
the frequency with which the dynamical systems Ti are chosen is described by a matrix of
probabilities [pi j ]Ni, j=1, pi j : Y → [0, 1]. The maps qθ are randomly chosen with place
dependent distribution.

The existence of an exponentially attractive invariant measure and strong law of large
numbers for Markov operator generated by discrete time random dynamical systems was
proven by Horbacz and Ślȩczka in [19]. Our model is similar to the so-called piecewise-
deterministicMarkovprocess introducedbyDavis [5]. There is a substantial literature devoted
to the problem the existence of an exponentially attractive invariant measure for piecewise-
deterministic Markov processes. In [2] the authors considers the particular situation for
randomdynamical systemswithout jumps, ( i.eqθ (x) = x), whenY = R

d . UnderHormander
type bracket conditions, the authors proves that there exists a unique invariant measure and
that the processes converges to equilibrium in the total variation norm. We consider random
dynamical systemswith randomly chosen jumps acting on a given Polish space (Y, �). In fact,
it is difficult to ensure that the process under consideration satisfies all the ergodic properties
on a compact set. In [4] the authors consider a Markov process with two components: the
first component evolves according to one of finitely many underlying Markovian dynamics,
with a choice of dynamics that changes at the jump times of the second component, but also
without jumps.

Given a Lipschitz function g : X → R we define

Sn(g) = g(x0) + · · · + g(xn−1) and St (g) =
∫ t

0
g(X (s))ds.

Our aim is to find conditions under which Sn(g) and St (g) satisfies CLT.
The organization of the paper goes as follows. Section 2 introduces basic notation and

definitions that are needed throughout the paper. Random dynamical systems is provided
in Sect. 3. The main theorem (CLT) is also formulated there. Section 4 is devoted to the
construction of coupling measure for random dynamical systems. Auxiliary theorems are
proved in Sect. 5. The CLT for discrete and continuous time processes is established in
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Sect. 6. In Sect. 7 we illustrate the usefulness of our criteria for CLT for Markov chain
associated with iterated function systems with place - dependent probabilities and Poisson
driven stochastic differential equations.

2 Notation and Basic Definitions

Let (X, �X ) be a Polish space. We denote by BX the family of all Borel subsets of X . Let
B(X) be the space of all bounded and measurable functions f : X → R with the supremum
norm. Then, C(X) is the space of all bounded and continuous functions and Lipb(X) is the
space of all bounded and Lipschitz functions, also with the supremum norm.

We denote by M(X) the family of all non negative Borel measures on X and by M f in(X)

and M1(X) its subfamilies such that μ(X) < ∞ and μ(X) = 1, respectively. Elements of
M f in(X) which satisfy μ(X) ≤ 1 are called sub-probability measures. To simplify notation,
we write

〈 f, μ〉 =
∫
X
f (x)μ(dx) for f ∈ B(X), μ ∈ M(X).

Let μ ∈ M(X), by L2(μ) we denote the space of square integrable function g : X → R
for which ‖g‖2 = ∫

Y g2dμ < ∞, and let L2
0(μ) denote the set of g ∈ L2(μ) for which

〈g, μ〉 = 0.
An operator P : M f in(X) → M f in(X) is called a Markov operator if

P(λ1μ1 + λ2μ2) = λ1Pμ1 + λ2Pμ2 for λ1, λ2 ≥ 0, μ1, μ2 ∈ M f in(X),

Pμ(X) = μ(X) for μ ∈ M f in(X).

Markov operator P : M f in(X) → M f in(X) for which there exists a linear operator U :
B(X) → B(X) such that

〈U f, μ〉 = 〈 f, Pμ〉 for f ∈ B(X), μ ∈ M f in(X)

is called a regular operator. We say that a regular Markov operator P is Feller ifU (C(X)) ⊂
C(X). Every Markov operator P may be extended to the space of signed measures on X
denoted by Msig(X) = {μ1 − μ2 : μ1, μ2 ∈ M f in(X)}.

By {�(x, ·) : x ∈ X} we denote a transition probability function for P , i.e. a family of
measures �(x, ·) ∈ M1(X) for x ∈ X , such that the map x �→ �(x, A) is measurable for
every A ∈ BX and

Pμ(A) =
∫
A

�(x, A)μ(dx) for A ∈ BX and μ ∈ M f in(X),

or equivalently

U f (x) =
∫
X
f (y)�(x, dy) for x ∈ X and f ∈ B(X).

Distributions �n(x, ·)), n ∈ N, are defined by induction on n

�0(x, A) = δx (A), �1(x, A) = �(x, A) = Pδx (A),

�n(x, A) =
∫
Y

�1(x, A)�n−1(x, dy), (2.1)

for x ∈ X , A ∈ BX .

123



1264 K. Horbacz

A coupling for {�1(x, ·) : x ∈ X} is a family {C1((x, y), ·) : x, y ∈ X} of probability
measures on X2 such that

C1((x, y), A × X) = �1(x, A), C1((x, y), X × B) = �1(y, B)

for A, B ∈ BX and x, y ∈ X .
In the following we assume that there exists a subcoupling for {�1(x, ·) : x ∈ X}, i.e. a

family {Q1((x, y), ·) : x, y ∈ X} of subprobability measures on X2 such that the mapping
(x, y) �→ Q1((x, y), A × B) is measurable for every A, B ∈ BX and

Q1((x, y), A × X) ≤ �1(x, A), Q1((x, y), X × B) ≤ �1(y, B)

for A, B ∈ BX . Measures {Q1((x, y), ·) : x, y ∈ X} allow us to construct a coupling for
{�1(x, ·) : x ∈ X}. Define {R1((x, y), ·) : x, y ∈ X} by

R1((x, y), A × B)

= (�1(x, A) − Q1((x, y), A × X))(�1(y, B) − Q1((x, y), X × B))

1 − Q1((x, y), X2)

if Q1((x, y), X2) < 1 and R1((x, y), A × B) = 0 if Q1((x, y), X2) = 1 for A, B ∈ BX .
A simple computation shows that the family {C1((x, y), ·) : x, y ∈ X} of probability

measures on X × X defined by

C1((x, y), ·) = Q1((x, y), ·) + R1((x, y), ·) for x, y ∈ X

is a coupling for {�1(x, ·) : x ∈ X}.
For fixed x̄ ∈ X we consider the space M1

1 (X) of all probability measures with the first
moment finite, i.e.,

M1
1 (X) =

{
μ ∈ M1(X) :

∫
X

�X (x, x̄)μ(dx) < ∞
}

and the space M2
1 (X) of all probability measures with finite second moment, i.e.,

M2
1 (X) =

{
μ ∈ M1(X) :

∫
Y

�2
X (x, x)μ(dx) < ∞

}
.

The family is independent of the choice of x̄ ∈ X .
Fix probability measures μ, ν ∈ M1

1 (X) and Borel sets A, B ∈ BX . We consider b ∈
M1(X2) such that

b(A × X) = μ(A), b(X × B) = ν(B) (2.2)

and bn ∈ M1(X2) such that, for every n ∈ N,

bn(A × X) = Pnμ(A), bn(X × B) = Pnν(B), (2.3)

where P : M1(X) → M1(X) is given Markov operator.
For measures b ∈ M1

f in(X
2) finite on X2 and with the first moment finite we define

the linear functional

φ(b) =
∫
X2

�X (x, y)b(dx × dy). (2.4)

A continuous function V : X → [0,∞) such that V is bounded on bounded sets and
limx→∞ V (x) = +∞ is called a Lapunov function.
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We call μ∗ ∈ M f in(X) an invariant measure of P if Pμ∗ = μ∗. An invariant measure
μ∗ is attractive if

lim
n→∞〈 f, Pn〉 = 〈 f, μ∗〉 for f ∈ C(X), μ ∈ M1(X).

For μ ∈ M f in(X), we define the support of μ by

suppμ = {x ∈ X : μ(B(x, r)) > 0 for r > 0},
where B(x, r) is an open ball in X with center at x ∈ X and radius r > 0.

In Msig(X), we introduce the Fortet-Mourier norm

‖μ‖FM = sup
f ∈F

|〈 f, μ〉|,

where F = { f ∈ C(X) : | f (x) − f (y)| ≤ �X (x, y), | f (x)| ≤ 1 for x, y ∈ X}. The
space M1(X) with the metric ‖μ1 − μ2‖FM is complete (see [9,33] or [39]). It is known
(see Theorem 11.3.3, [7]) that the following conditions are equivalent

(i) limn→∞〈 f, μn〉 = 〈 f, μ〉 for all f ∈ F ,
(ii) limn→∞ ‖μn − μ‖FM = 0,

where (μn)n∈N ⊂ M1(X) and μ ∈ M1(X).

3 Random Dynamical Systems

Let (Y, �) be a Polish space, R+ = [0,+∞) and I = {1, . . . , N }, 
 = {1, . . . , K }, where
N and K are given positive integers.

We are given a family of continuous functions qθ : Y → Y, θ ∈ 
 and a finite sequence
of semidynamical systems Ti : R+ × Y → Y , i ∈ I , i.e.

Ti (s + t, x) = Ti (s, (Ti (t, x)), Ti (0, x) = x for s, t ∈ R+, i ∈ I and x ∈ Y,

the transformations Ti : R+ × Y → Y , i ∈ I are continuous.
Let pi : Y → [0, 1], i ∈ I , p̃θ : Y → [0, 1], θ ∈ 
 be probability vectors,∑N
i=1 pi (x) = 1 , x ∈ Y ,

∑K
θ=1 p̃θ (x) = 1 , x ∈ Y , and [pi j ]i, j∈I , pi j : Y → [0, 1], i, j ∈

I be a matrix of probabilities,
∑N

j=1 pi j (x) = 1 , x ∈ Y, i ∈ I . In the sequel we denote the
system by (T, q, p).

Finally, let (�,�,P) be a probability space and {τn}n≥0 be an increasing sequence of
random variables τn : � → R+ with τ0 = 0 and such that the increments 
τn = τn − τn−1,
n ∈ N, are independent and have the same density g(t) = λe−λt , t ≥ 0.

The intuitive description of random dynamical system corresponding to the system
(T, q, p) is the following.

For an initial point x0 ∈ Y we randomly select a transformation Ti0 from the set
{T1, . . . , TN } in such a way that the probability of choosing Ti0 is equal to pi0(x0), and
we define

X (t) = Ti0(t, x0) for 0 ≤ t < τ1.

Next, at the random moment τ1, at the point Ti0(τ1, x0) we choose a jump qθ from the set
{q1, . . . , qK } with probability p̃θ (Ti0(τ1, x0)) and we define

x1 = qθ (Ti0(τ1, x0)).

123



1266 K. Horbacz

Finally, given xn , n ≥ 1, we choose Tin in such a way that the probability of choosing Tin
is equal to pin−1in (xn) and we define

X (t) = Tin (t − τn, xn) for τn < t < τn+1.

At the point Tin (
τn+1, xn) we choose qθn with probability p̃θn (Tin (
τn+1, xn)). Then we
define

xn+1 = qθn (Tin (
τn+1, xn)).

The above considerations may be reformulated as follows. Let {ξn}n≥1 and {γn}n≥1 be
sequences of random variables, ξn : � → I and γn : � → 
, such that

P(ξ0 = i |x0 = x) = pi (x),

P(ξn = k|xn = x and ξn−1 = i) = pik(x), for n ≥ 1

P(γn = θ |Tξn−1(
τn, xn−1) = y) = p̃θ (y). (3.1)

Assume that {ξn}n≥0 and {γn}n≥1 are independent of {τn}n≥0 and that for every n ∈ N.
Given an initial random variable ξ1 the sequence of the random variables {xn}n≥0, xn :

� → Y , is given by

xn = qγn

(
Tξn−1(
τn, xn−1)

)
for n = 1, 2, . . . (3.2)

and the stochastic process {X (t)}t≥0, X (t) : � → Y , is given by

X (t) = Tξn−1(t − τn−1, xn−1) for τn−1 ≤ t < τn, n = 1, 2, . . . (3.3)

We obtain a piecewise deterministic trajectory for {X (t)}t≥0 with jump times {τ1, τ2, . . .}
and post jump locations {x1, x2, . . .}.

Now define a stochastic process {ξ(t)}t≥0, ξ(t) : � → I , by

ξ(t) = ξn−1 for τn−1 ≤ t < τn, n = 1, 2, . . . (3.4)

It is easy to see that {X (t)}t≥0 and {xn}n≥0 are not Markov processes. In order to use the
theory of Markov operators we must redefine the processes {X (t)}t≥0 and {xn}n≥0 in such a
way that the redefined processes become Markov.

To this end, consider the space X = Y × I endowed with the metric �X given by

�X
(
(x, i), (y, j)

) = �(x, y) + �c(i, j) for x, y ∈ Y, i, j ∈ I, (3.5)

where �c is the discrete metric in I . The constant c will be chosen later.
We will study theMarkov chain {(xn, ξn)}n≥0 , (xn, ξn) : � → X and theMarkov process

{(X (t), ξ(t))}t≥0, (X (t), ξ(t)) : � → X .
Now consider the sequence of distributions

μn(A) = P
(
(xn, ξn) ∈ A

)
for A ∈ BX , n ≥ 0.

It is easy to see that
μn+1 = Pμn for n ≥ 0,

where P : M1(X) → M1(X) is the Markov operator given by

Pμ(A) =
∑
j∈I

∑
θ∈


∫
X

∫ +∞

0
λe−λt1A

(
qθ

(
Tj (t, x)

)
, j
)
pi j (x) p̃θ

(
Tj (t, x)

)
dt μ(dx, di)

(3.6)
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and its dual operator U : B(X) → B(X) by

U f (x, i) =
∑
j∈I

∑
θ∈


∫ +∞

0
λe−λt f

(
qθ

(
Tj (t, x)

)
, j
)
pi j (x) p̃θ

(
Tj (t, x)

)
dt. (3.7)

The semigroup {Pt }t≥0 generated by the process {(X (t), ξ(t))}t≥0, (X (t), ξ(t)) : � → X
is given by

〈Ptμ, f 〉 = 〈μ, T t f 〉 for f ∈ C(X), μ ∈ M1(X) and t ≥ 0, (3.8)

where
T t f (x, i) = E(x,i)( f (X (t), ξ(t))) for f ∈ C(X). (3.9)

(E denotes the mathematical expectation on (�,�,P)).
A measure μ0 is called invariant with respect to Pt if Ptμ0 = μ0 for every t ≥ 0.
We make the following assumptions on the system (T, q, p).
There are three constants L ≥ 1, α ∈ R and Lq > 0 such that
∑
j∈I

pi j (y)�(Tj (t, x), Tj (t, y)) ≤ Leαt�(x, y) for x, y ∈ Y, i ∈ I, t ≥ 0 (3.10)

and ∑
θ∈


p̃θ (x)�(qθ (x), qθ (y)) ≤ Lq�(x, y) for x, y ∈ Y. (3.11)

Assume that there exists x∗ ∈ Y such that∫
R+

e−λt�(qθ (Tj (t, x∗)), qθ (x∗)) dt < ∞ for j ∈ I, θ ∈ 
. (3.12)

We also assume that the functions p̃θ , θ ∈ 
, and pi j , i, j ∈ I , satisfy the following
conditions ∑

j∈I
|pi j (x) − pi j (y)| ≤ γ 1�(x, y) for x, y ∈ Y, i ∈ I,

∑
θ∈


| p̃θ (x) − p̃θ (y)| ≤ γ 2�(x, y) for x, y ∈ Y, (3.13)

where γ 1, γ 2 > 0.
Moreover, we assume that there are i0 ∈ I, θ0 ∈ 
 such that

�(Ti0(t, x), Ti0(t, y)) ≤ Leαt�(x, y) for x, y ∈ Y, t ≥ 0,

�(qθ0(x), qθ0(y)) ≤ Lq�(x, y) for x, y ∈ Y, (3.14)

and
δ1 = inf

i∈I infx∈Y pii0(x) > 0, δ2 = inf
x∈Y p̃θ0(x) > 0. (3.15)

Let {(xn, ξn)}n∈N be the Markov chain given by (3.1) and (3.2). The existence of an expo-
nentially attractive invariant measure for Markov operator generated by random dynamical
systems was proven by Horbacz and Ślȩczka in [19].

Theorem 1 [19] Assume that system (T, q, p) satisfies conditions (3.10)–(3.15). If

LLq + α

λ
< 1. (3.16)

then
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1268 K. Horbacz

(i) there exists a unique invariant measure μ∗ ∈ M1
1(X) for the chain {(xn, ξn)}n≥0, which

is attractive in M1(X).
(ii) there exists q ∈ (0, 1) such that for μ ∈ M1

1(X) there exists and C = C(μ) > 0

||Pnμ − μ∗||FM ≤ qnC(μ), for n ∈ N,

where x∗ is given by (3.12),
(iii) the strong lawof large numbers holds for the chain {(xn, ξn)}n≥0 starting from (x0, ξ0) ∈

X, i.e. for every bounded Lipschitz function f : X → R and every x0 ∈ Y and ξ0 ∈ I
we have

lim
n∈∞

1

n

n−1∑
k=0

f (xk, ξk) =
∫
X
f (x, ξ) μ∗(dx, dξ)

Px0,ξ0 almost surely.

Remark 1 Condition (3.16) means that a large jump rate and a good contraction of the jumps
could compensate expanding semiflows (α > 0).

Let {(xn, ξn)}n∈N be the Markov chain given by (3.1), (3.2) with initial distribution μ ∈
M2

1 (X) and letμ∗ ∈ M1
1(X) be a unique invariant measure for the process (xn, ξn)n≥0. Now,

choose an arbitrary function g : X → R which is Lipschitz and satisfies 〈g, μ∗〉 = 0. For
every n ∈ N, put

Sμ
n := g(x1, ξ1) + · · · + g(xn, ξn)√

n
.

Now we formulate the main results of this paper. Its proof is given in Sect. 6.

Theorem 2 Assume that all assumptions of Theorem 1 are fulfilled and the unique invariant
measure has finite secondmoment, then Sμ

n converges in distribution to some random variable
with normal distribution N (0, σ 2), as n → ∞, where σ 2 = limn→∞ Eμ∗(S

μ∗
n )2.

Checking that the invariant measure has finite secondmoment could be difficult if we have
no a priori information about the invariant measure. Now, assumption (3.12) is strengthened
to the following condition:

∫
R+

e−λt�2(Tj (t, x∗), x∗)dt < ∞ for j ∈ I. (3.17)

Theorem 3 Assume that system (T, p, q) satisfies conditions (3.17) and instead of (3.14)–
(3.15) for some i0 ∈ I, θ0 ∈ 
, that the conditions (3.14)–(3.15) are satisfied for all i0 ∈
I, θ0 ∈ 
. If

(LLq)
2 + α

λ
<

1

2
, (3.18)

then the invariant measure μ∗ for the process {(xn, ξn)}n≥0 has finite second moment.

Note that (3.18) implies (3.16). Assuming (3.18) instead (3.16) allows us to show that
μ∗ ∈ M2

1 (X), which is essential to establish CLT in the way presented in this paper.
The next result describing CLT for the process {(xn)}n≥0 on Y is an obvious consequence

of Theorem 2.
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Remark 2 Choose an arbitrary function f : Y → Rwhich isLipschitz and satisfies 〈 f, μ̃∗〉 =
0, where μ̃∗(A) = μ∗(A× I ), A ∈ BY . Let μ̃ ∈ M2

1 (Y ) be an initial distribution of {xn}n∈N.
Under the hypotheses of Theorem 2 the distribution of

Sμ̃
n = f (x1) + · · · + f (xn)√

n

converges to some random variable with normal distribution N (0, σ 2), as n → ∞, where
σ 2 = limn→∞ Eμ̃∗(S

μ̃∗
n )2.

Let {(X (t), ξ(t))}t≥0 be the Markov process given by (3.3) and (3.4). Relationships
between an invariant measure for the Markov operator P given by (3.6) and an invariant
measures for {Pt }t≥0 given by (3.8) was proven by Horbacz [17]. Similar results have been
proved by Davis [5, Proposition 34.36]. It has been also studied in [28].

The existence of invariantmeasure for {Pt }t≥0 follows fromTheorem1 andTheorem5.3.1
[17]. If μ∗ ∈ M1(X) is an invariant measure for the Markov operator P , then μ0 = Gμ∗,
where

Gμ(A) =
∑
i∈I

∫

X

+∞∫

0

1A(Ti (t, x), i)pki (x)λe
−λt dtμ(dx, dk), A ∈ BX , μ ∈ M1(X),

is an invariant measure for the Markov semigroup {Pt }t≥0.
The next theorem is partially inspired by the reasoning which can be found in Lemma

2.5 [2]. Since the Markov process {(X (t), ξ(t))}t≥0 is defined with he help of the Markov
chain {(xn, ξn)}n∈N given by (3.1), (3.2) we use Theorem 1 and Theorem 2 in the proof of
following theorem.

Theorem 4 Assume that all assumptions of Theorems 1 and 2 are fulfilled and the unique
invariant measure μ0 has finite second moment, then

(1) the strong law of large numbers holds for the process {(X (t), ξ(t))}t≥0 starting from
(x0, i0) ∈ X, i.e. for every bounded Lipschitz function f : X → R and every x0 ∈ Y and
i0 ∈ I we have

lim
t∈∞

1

t

∫ t

0
f (X (s), ξ(s))ds =

∫
X
f (x, i) μ0(dx, di)

Px0,i0 almost surely,
(2) the Central Limit Theorem holds for the process {(X (t), ξ(t))}t≥0 i.e. for every bounded

Lipschitz function f : X → R such that 〈 f, μ0〉 = 0

1√
t

∫ t

0
f (X (s), ξ(s))ds

converges in distribution to some random variable with normal distribution N (0, σ̃ 2), as
n → ∞, where σ̃ 2 = limn→∞ Eμ∗(S

μ∗
n )2 + 〈H f − K̃ 2 f, μ∗〉 and

H f (x, i) =
N∑
j=1

∫ ∞

0
λe−λs

(∫ s

0
f (Tj (v, x), j)dv

)2

pi j (x)ds,

K̃ f (x, i) =
N∑
j=1

∫ ∞

0
e−λs f (Tj (s, x), j)pi j (x)ds for f ∈ B(X). (3.19)
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4 Coupling for Random Dynamical Systems

Let P : M f in(X) → M f in(X) be the transition Markov operator for the random dynamical
system (T, p, q), where X = Y × I .

Distributions �n((x, i), ·)), n ∈ N, are given by

�0((x, i), A) = δ(x,i)(A),

�1((x, i), A) = �((x, i), A) = Pδ(x,i)(A)

=
∑
j∈I

∑
θ∈


∫ +∞

0
λe−λt1A

(
qθ

(
Tj (t, x)

)
, j
)
pi j (x) p̃θ

(
Tj (t, x)

)
dt,

�n((x, i), A) =
∫
X

�1((y, j), A)�n−1((x, i), d(y, j)), (4.1)

for (x, i) ∈ X , A ∈ BX . If we assume that, for (x, i) ∈ X , �̄n((x, i), ·) is a measure on Xn ,
generated by a sequence (�k((x, i), ·))k∈N, then

�̄n+1((x, i), A × B) =
∫
A

�1(zn, B)�̄n((x, i), dz), (4.2)

where z = ((z1, i1), . . . , (zn, in)) and A ∈ BXn , B ∈ BX , is a measure on Xn+1. Note that
�1((x, i), ·), . . . , �n((x, i), ·), given by (4.1), are marginal distributions of �̄n((x, i), ·), for
every (x, i) ∈ X . Finally, we obtain a family {�∞((x, i), ·) : (x, i) ∈ X} of sub-probability
measures on X∞. This construction is motivated by Hairer [12].

Denote by

(q ◦ T )n(tn, θn, in, x) = qθn

(
Tin
(
tn, qθn−1(Tin−1(tn−1, . . . , Ti1(t1, x))

))
(4.3)

and consider the probabilities Pn : Y × I n+1 × R
n−1+ × 
n−1 → [0, 1] and Pn : Y × I n ×

R
n+ × 
n → [0, 1] given by

P1(x, i, i1) = pii1(x),

Pn(x, i, in, tn−1, θn−1)

= pii1(x)pi1i2
(
qθ1(Ti1(t1, x))

) · . . . · pin−1in

(
(q ◦ T )n−1(tn−1, θn−1, in−1, x)

)
,

for n ≥ 2, and

P1(x, i1, t1, θ1) = p̃θ1(Ti1(t1, x)),

Pn(x, in, tn, θn) =Qpθ1

(
Ti1(t1, x)

)
Qpθ2

(
Ti2(t2,qθ2(Ti1(t1, x))

) · . . . ·
· p̃θn

(
Tin (tn, (q ◦ T )n−1(tn−1, θn−1, in−1, x)

)
,

for n ≥ 2, where

tn = (tn, tn−1, . . . , t1), θn = (θn, θn−1, . . . , θ1), in = (in, in−1 . . . , i1).

Then Pn is given by

Pnμ(A) =
∑

jn=( jn ,..., j1)∈I n

∫
X

∫
R
n+

∑
θn=(θ1,...,θn)∈
n

1A
(
(q ◦ T )n(tn, θn, jn, x)

)
, jn
)

· Pn
(
x, i, jn, tn−1, θn−1

) · Pn
(
x, jn, tn, θn

)
λe−λ(t1+...+tn) dtn μ(dx, di).
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Fix x∗ ∈ Y for which assumption (3.12) holds. We define V : X → [0,∞), by

V (x, i) = �(x, x∗) for (x, i) ∈ X.

Lemma 1 Assume that the system (T, p, q) satisfies conditions (3.10) - (3.12) and (3.16).
If μ ∈ M1

1 (X), then Pnμ ∈ M1
1 (X) for every n ∈ N. Moreover, there are constants a < 1

and c > 0 such that

〈V, Pnμ〉 ≤ an〈V, μ〉 + 1

1 − a
c for n ∈ N.

Proof

UV (x, i) ≤
∑
j∈I

∑
θ∈


∫ +∞

0
�(qθ

(
Tj (t, x)

)
, qθ

(
Tj (t, x∗)

)
)λe−λt pi j (x) p̃θ

(
Tj (t, x)

)
dt

+
∑
j∈I

∑
θ∈


∫ +∞

0
�(qθ

(
Tj (t, x∗)

)
, qθ (x∗))λe−λt pi j (x) p̃θ

(
Tj (t, x)

)
dt

+
∑
j∈I

∑
θ∈


∫ +∞

0
�(qθ (x∗), x∗)λe−λt pi j (x) p̃θ

(
Tj (t, x)

)
dt.

Further, using (3.10)–(3.12) and (3.16) we obtain

UV (x, i) ≤ aV (x, i) + c, (4.4)

where

a = λLLq

λ − α
< 1,

c =
∑
j∈I

∑
θ∈


∫ +∞

0
λe−λt�(qθ

(
Tj (t, x∗)

)
, qθ (x∗)) dt +

∑
θ∈


�(qθ (x∗), x∗), (4.5)

so V is a Lapunov function for P . ��

Furthermore, we define V̄ : X2 → [0,∞)

V̄ ((x, i), (y, j)) = V (x, i) + V (y, j) for(x, i), (y, j) ∈ X.

Note that, for every n ∈ N,

〈V̄ , bn〉 ≤ a〈V̄ , bn−1〉 + 2c ≤ an〈V̄ , b〉 + 2

1 − a
c, (4.6)

where b and bn are given by (2.2) and (2.3). Since the measure b ∈ M1
f in(X

2) is finite on

X2 and with the first moment finite we define the linear functional

φ(b) =
∫
X2

�X ((x, i), (y, j))b(d(x, i) × d(y, j)).

Following the above definitions, we easily obtain

φ(b) ≤ 〈V̄ , b〉. (4.7)
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Set F = X × X and define

Q1((x1, i1)(x2, i2), A × B) =
∑
j∈I

∑
θ∈


∫ +∞

0
λe−λt {pi1 j (x1) p̃θ

(
Tj (t, x1)

) ∧ pi2 j (x2) p̃θ

(
Tj (t, x2)

)}
× 1A×B

((
qθ

(
Tj (t, x1)

)
, j), (qθ

(
Tj (t, x2)

)
, j
))
dt (4.8)

for A, B ⊂ X , where a ∧ b stands for the minimum of a and b, and

Qn((x1, i1)(x2, i2), A × B)

=
∫
X2

Q1((u, i)(v, j), A × B)Qn−1((x1, i1)(x2, i2), d(u, i) × d(v, j)), n ∈ N. (4.9)

It is easy to check that

Q1((x1, i1)(x2, i2), A × X)

≤
∑
j∈I

∑
θ∈


∫ +∞

0
λe−λt {pi1 j (x1) p̃θ

(
Tj (t, x1)

)
1A×B

((
qθ

(
Tj (t, x1)

)
, j)
)
, j
))
dt

= �1((x1, i1), A)

and analogously Q1((x1, i1)(x2, i2), X × B) ≤ �1((x2, i2), B). Similarly, for n ∈ N,

Qn((x1, i1)(x2, i2), A × X) ≤ �n((x1, i1), A)

Qn((x1, i1)(x2, i2), X × B) ≤ �n((x2, i2), B)

For b ∈ M f in(X2), let Qnb denote the measure

(Qnb)(A × B) =
∫
X2

Qn((x, i)(y, j), A × B)b(d(x, i) × d(y, j) (4.10)

for A, B ∈ BX , n ∈ N. Note that, for every A, B ∈ BX and n ∈ N, we obtain

(Qn+1b)(A × B) =
∫
X2

Qn+1(((x, i)(y, j), A × B)b(d(x, i) × d(y, j))

=
∫
X2

∫
X2

Q1(((u, l)(v, k), A×B)Qn((x, i)(y, j)), d(u, l) × d(v, k))b(d(x, i)×d(y, j))

=
∫
X2

Q1(((u, l)(v, k)), A × B)(Qnb)(d(u, l) × d(v, k)) = (Q1(Qnb))(A × B).

(4.11)

Again, following (4.1) and (4.2), we are able to construct measures on products and, as a
consequence, a measure Q∞b on X∞, for every b ∈ M f in(X2). Now, we check that, for
n ∈ N and b ∈ M f in(X2),

φ(Qnb) ≤ anφ(b). (4.12)
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Let us observe that

φ(Qnb) =
∫
X2

∫
X2

�X ((x, i1), (y, i2))Q
n(((u, l)(v, k)), d(x, i1)

× d(y, i2))b(d(u, l) × d(v, k))

=
∫
X2

∫
X2

∫ T

0

∫
X2

�X ((x, i1), (y, i2))Q1((u1, l1)(v1, k1))(d(x, i1) × d(y, i2))

· Qn−1(((u, l)(v, k)), (u1, l1) × (v1, k1))b(d(u, l) × d(v, k))

=
∫
X2

∫
X2

�X ((x, i1), (y, i2))
∑
j∈I

∑
θ∈


∫ +∞

0
λe−λt {pi1 j (u1) p̃θ

(
Tj (t, u1)

)∧
∧ pi2 j (v1) p̃θ

(
Tj (t, v1)

)}δ((
qθ

(
Tj (t,x1)

)
, j),(qθ

(
Tj (t,x2)

)
, j
))(d(x, i1) × d(y, i2))

· Qn−1(((u, l)(v, k)), (u1, l1) × (v1, k1))b(d(u, l) × d(v, k))

≤
∫
X2

∫
X2

∑
j∈I

∑
θ∈


∫ +∞

0
λe−λt pi1 j (u1) p̃θ

(
Tj (t, u1)

)

· �X
(
(qθ

(
Tj (t, u1)

)
, j), (qθ

(
Tj (t, v1)

)
, j
))

· Qn−1(((u, l)(v, k)), (u1, l1) × (v1, k1))b(d(u, l) × d(v, k)).

Following (3.10) and (3.11), we obtain

φ(Qnb) ≤
∫
X2

∫
X2

∫ +∞

0
λe−λt LLqe

αt�X ((u1, l1), (v1, k1))dt

· Qn−1(((u, l)(v, k)), (u1, l1) × (v1, k1))b(d(u, l) × d(v, k))

= LLqλ

λ − α

∫
X2

∫
X2

�X ((u1, l1), (v1, k1))dt

· Qn−1(((u, l)(v, k)), (u1, l1) × (v1, k1))b(d(u, l) × d(v, k))

≤ . . . ≤ (LLq
λ

λ − α
)nφ(b) = anφ(b).

We may construct the coupling {C1(((x, i), (y, j)), ·) : (x, i), (y, j) ∈ X} for
{�1((x, i), ·) : (x, i) ∈ X} such that Q1(((x, i), (y, j)), ·) ≤ C1(((x, i), (y, j)), ·), whereas
measures R1(((x, i), (y, j)), ·) are non-negative. Following the rule given in (4.2), we easily
obtain the family of probability measures

{C∞(((x, i), (y, j)), ·) : (x, i), (y, j) ∈ X}
on (X2)∞ withmarginals�∞((x, i), ·) and�∞((y, j), ·). This construction appears in [12].

We may also consider a sequence of distributions ({Cn(((x, i), (y, j)), ·)})n∈N, con-
structed by induction onn, as it is done in (4.1).Note thatCn(((x, i), (y, j)), ·) is then-thmar-
ginal of C∞(((x, i), (y, j)), ·), for (x, i), (y, j) ∈ X . Additionally, {Cn(((x, i), (y, j)), ·)}
fulfills the role of coupling for {�n((x, i), ·) : (x, i) ∈ X}. Indeed, for A ∈ BY ,

Cn(((x, i), (y, j)), A × X) =
∫
X2

C1((u, v), A × X)Cn−1(((x, i), (y, j)), du × dv)

=
∫
X2

�1(u, A)Cn−1(((x, i), (y, j)), du × dv)

= . . . = �n((x, i), A)

and, similarly, Cn(((x, i), (y, j)), X × B) = �n((y, j), B).
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1274 K. Horbacz

Fix ((x0, i0), (y0, j0)) ∈ X2. The sequence of transition probability functions(
{Cn(((x, i), (y, j)), ·) : (x, i), (y, j) ∈ X}

)
n∈N defines the Markov chain Z on X2 with

starting point ((x0, i0), (y0, j0)), while the sequence of transition probability functions( {
Ĉn(((x, i), (y, j), k), ·) : (x, i), (y, j) ∈ X, k ∈ {0, 1}

} )
n≥1

defines the Markov chain Ẑ on the augmented space X2 × {0, 1} with initial distrib-
ution Ĉ0(((x0, i0), (y0, j0)), ·) = δ((x0,i0),(y0, j0),1)(·). If Ẑn = ((x, i), (y, j), k), where
(x, i), (y, j) ∈ X , k ∈ {0, 1}, then
P(Ẑn+1 ∈ A × B × {1} | Ẑn = ((x, i), (y, j), k), k ∈ {0, 1}) = Qn(((x, i), (y, j)), A × B),

P(Ẑn+1 ∈ A × B × {0} | Ẑn = ((x, i), (y, j), k), k ∈ {0, 1}) = Rn(((x, i), (y, j)), A × B),

where A, B ∈ BY . Once again, we refer to (4.1) and the Kolmogorov theorem to obtain the
measure Ĉ∞(((x0, i0), (y0, j0)), ·) on (X2 × {0, 1})∞ which is associated with the Markov
chain Ẑ.

From now on, we assume that processes Z and Ẑ taking values in X2 and X2 ×
{0, 1}, respectively, are defined on (�,�,P). The expected value of the measures
C∞(((x0, i0), (y0, j0)), ·) or Ĉ∞(((x0, i0), (y0, j0)), ·) is denoted by E(x0,i0),(y0, j0).

5 Auxiliary Theorems

Before proceeding to the proof of Theorem 2 we formulate two lemmas and two theorems,
which are interesting in their own right. The first one is inspirated by the reasoning which
can be found in [13].

Fix ã ∈ (0, 1 − a) and set

Kã = {((x, i), (y, j)) ∈ X2 : V̄ ((x, i), (y, j)) < ã−12c},
where a and c are given by (4.5). Let τKã : (X2)∞ → N denote the time of the first visit in
Kã , i.e.

τKã (((xn, in), (yn, jn))n∈N) = inf{n ∈ N : ((xn, in), (yn, jn)) ∈ Kã}.
As a convention, we put τKã (((xn, in), (yn, jn))n∈N) = ∞, if there is no n ∈ N such that
((xn, in), (yn, jn)) ∈ Kã .

Since

〈V̄ , bn〉 ≤ an〈V̄ , b〉 + 2

1 − a
c,

by Lemma 2.2 in [21] or Theorem 7 in [13], we obtain

Lemma 2 For every ζ ∈ (0, 1) there exist positive constants D1, D2 such that

E(x0,i0),(y0, j0)

[
(a + ã)

−ζ τKã

]
≤ D1V̄ ((x0, i0), (y0, j0)) + D2.

For every positive r > 0, we define the set

Cr = {((x, i), (y, j)) ∈ X2 : �X ((x, i), (y, j)) < r
}
.
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Lemma 3 Assume that the system (T, q, p) satisfies conditions (3.10)–(3.11) and (3.15)–
(3.16). Fix a1 ∈ (a, 1). Let Cr be the set defined above and suppose that b ∈ M f in(X2) is
such that suppb ⊂ Cr . There exists γ̄ > 0 such that

(Qnb)(Can1 r
) ≥ γ̄ n‖b‖.

Proof By (4.3), (4.8) and (4.9), we obtain

Qn((x, i)(y, j),Can1 r
) =

∑
(i1,...,in)

∑
(θ1,...,θn)

∫
R
n+

λne−λ(t1+...+tn)

·
n∏

k=2

[pik−1ik ((q ◦ T )k−1(tk−1, θk−1, ik−1, x))

· p̃θk (Tik (tk, (q ◦ T )k−1(tk−1, θk−1, ik−1, x)))

∧ pik−1ik ((q ◦ T )k−1(tk−1, θk−1, ik−1, y))

· p̃θk (Tik (tk, (q ◦ T )k−1(tk−1, θk−1, ik−1, y)))

· pii1(x) p̃θ1(Ti1(t1, x)) ∧ pii1(y) p̃θ1(Ti1(t1, y))

· 1Can1 r
((q ◦ T )n(tn, θn, in, x), (q ◦ T )n(tn, θn, in, y))dt1 . . . dtn .

Directly from (4.9) and (4.10) we obtain

(Qnb)(Can1 r
) =

∫
Xn

Qn((x, i)(y, j),Can1 r
)b(d(x, i) × d(y, j))

Set

Tn × Sn × In
= {(tn, θn, in, ) ∈ R

n+ × 
n × I n :�((q ◦ T )n(tn, θn, in, x), (q ◦ T )n(tn, θn, in, y)) < an1r}
Note that 1Can1 r

((q ◦T )n(tn, θn, in, x), (q ◦T )n(tn, θn, in, y)) = 1 if and only if (tn, θn, in) ∈
Tn × Sn × In . Set (Tn ×Sn ×In)

′ := R
n+ ×
n × I n\Tn × Sn × In . According to assumptions

(3.10) and (3.11), we have
∫

(Tn×Sn×In)′
λne−λ(t1+...+tn)�((q ◦ T )n(tn, θn, in, x), (q ◦ T )n(tn, θn, in, y))

· pin−1in ((q ◦ T )n−1(tn−1, θn−1, in−1, x))

· p̃θn (Tin (tn, (q ◦ T )n−1(tn−1, θn−1, in−1, x))) · . . . · pii1(x) p̃θ1(Ti1(t1, x))dt1 . . . dtn

≤
∫
R
n+
Ln
q L

nλne−λ(t1+...+tn)eα(t1+...+tn)�(x, y)dt1 . . . dtn ≤ anr

for (x, i), (y, j) ∈ Cr , wherea = λLLq
λ−α

.Comparing thiswith the definition of (Tn×Sn×In)′,
we obtain

an1r
∫

(Tn×Sn×In)′
λne−λ(t1+...+tn) pin−1in ((q ◦ T )n−1(tn−1, θn−1, in−1, x)

· p̃θn (Tin (tn, (q ◦ T )n−1(tn−1, θn−1, in−1, x))) · . . . · pii1(x) p̃θ1(Ti1(t1, x)dt1 . . . dtn

< anr,
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which implies
∫

(Tn×Sn×In)′
λne−λ(t1+...+tn) pin−1in ((q ◦ T )n−1(tn−1, θn−1, in−1, x)

· p̃θn (Tin (tn, (q ◦ T )n−1(tn−1, θn−1, in−1, x))) · . . . · pii1(x) p̃θ1(Ti1(t1, x))dt1 . . . dtn

<
an

an1
< 1.

We then obtain that the integral overTn×Sn×In is not less than 1−
(

a
a1

)n ≥ (1− a
a1

)n =: γ n ,

for sufficiently big n ∈ N.
Using (3.15) we obtain

∫
Tn×Sn×In

λne−λ(t1+...+tn)dt1 . . . dtn ≥ (γ )n

Mn
1 M

n
2

,

where
M1 = sup

i∈I
sup
x∈Y

pii0(x), M2 = sup
x∈Y

p̃θ0(x). (5.1)

Finally,

(Qnb)(Can1 r
) ≥

∫
X2

δn1δ
n
2

∫
Tn×Sn×In

λne−λ(t1+...+tn)dt1 . . . dtnb(d(x, i) × d(y, j))

≥ δn1δ
n
2

(γ )n

Mn
1 M

n
2

‖b‖.

If we set γ̄ := δ1δ2
M1M2

γ , the proof is complete. ��

Theorem 5 Assume that the system (T, q, p) satisfies conditions (3.10)–(3.16). For every
ã ∈ (0, 1 − a), there exists n0 ∈ N such that

‖Q∞(((x, i), (y, j)), ·)‖ ≥ 1

2
γ̄ n0 for ((x, i), (y, j)) ∈ Kã,

where γ̄ > 0 is given in Lemma 3.

Proof Note that, for every real numbers u, v ∈ R, there is a general rule: min{u, v} + |u −
v| − u ≥ 0. Hence, for every (x1, i1), (x2, i2) ∈ X , we obtain

∑
j∈I

∑
θ∈


∫ +∞

0
λe−λt (min{pi1 j (x1) p̃θ (Tj (t, x1)), pi2 j (x2) p̃θ (Tj (t, x2))}

+ |pi1 j (x1) p̃θ (Tj (t, x1)) − pi2 j (x2) p̃θ (Tj (t, x2))| − pi1 j (x1) p̃θ (Tj (t, x1))
)
dt ≥ 0

and therefore, due to (4.8),

‖Q1((x1, i1)(x2, i2), ·)‖
+
∑
j∈I

∑
θ∈


∫ +∞

0
λe−λt |pi1 j (x1) p̃θ (Tj (t, x1)) − pi2 j (x2) p̃θ (Tj (t, x2))|dt ≥ 1.
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For every b ∈ Mfin(X2), we get

‖Q1b‖ =
∫
X2

Q1((x1, i1)(x2, i2), X
2)b(d(x1, i1) × d(x2, i2))

=
∫
X2

‖Q1((x1, i1)(x2, i2), ·)‖b(d(x1, i1) × d(x2, i2))

≥ ‖b‖ −
∫
X2

∑
j∈I

∑
θ∈


∫ +∞

0
λe−λt |pi1 j (x1) p̃θ (Tj (t, x1)) − pi2 j (x2) p̃θ (Tj (t, x2))|×

× dtb(d(x1, i1) × d(x2, i2)).

We consider two cases: i1 = i2 = i and i1 �= i2. From (3.10) and (3.13), we obtain for
i1 = i2 = i

∫ ∞

0
λe−λt

∑
j∈I

∑
θ∈


|pi j (x1) p̃θ (Tj (t, x1)) − pi j (x2) p̃θ (Tj (t, x2))|dt

≤
∫ ∞

0
λe−λt

∑
j∈I

∑
θ∈


|pi j (x1) − pi j (x2)| p̃θ (Tj (t, x1))|dt

+
∫ ∞

0
λe−λt

∑
j∈I

∑
θ∈


|pi j (x2)| p̃θ (Tj (t, x1)) − p̃θ (Tj (t, x2))|dt

≤ γ 1�(x1, x2) +
∫ ∞

0
λe−λtγ 2Le

αt�(x1, x2)dt

≤ (γ 1 + γ2)�(x1, x2) ≤ (γ 1 + γ2)d((x1, i1), (x2, i2)),

where γ2 = γ 2
Lλ

λ−α
.

Suppose now that i1 �= i2, then �c(i1, i2) = c > (γ 1 + γ2)
−1. In this case, we obtain

1 − (γ 1 + γ2)d((x1, i1), (x2, i2)) = 1 − (γ 1 + γ2)(�(x1, x2) + c) ≤ 1 − (γ 1 + γ2)c ≤ 0.

Thus

Q1((x1, i1), (x2, i2)), X
2) ≥ 0 ≥ 1 − (γ 1 + γ2)d((x1, i1), (x2, i2)).

Hence,

‖Q1b‖ ≥ ‖b‖ −
∫
X2

(γ 1 + γ2)d((x1, i1), (x2, i2))b(d(x1, i1) × d(x2, i2))

= ‖b‖ − (γ 1 + γ2)φ(b).

By (4.11) and

φ(Qnb) ≤ anφ(b),
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we obtain

‖Qnb‖ =
∫
X2

Q1((x, i)(y, j)), ·)(Qn−1b)(d(x, i) × d(y, j))

≥ ‖Qn−1b‖ − (γ 1 + γ2)φ(Qn−1b)

≥ ‖b‖ − (γ 1 + γ2)

n∑
k=1

φ(Qkb) ≥ ‖b‖ − (γ 1 + γ2)φ(b)
n∑

k=1

ak

≥ ‖b‖ − (γ 1 + γ2)
a

1 − a
φ(b),

where a = LLqλ

λ−α
.

We may choose r > 0 such that d((x1, i1), (x2, i2)) < r and

(γ 1 + γ2)
a

1 − a
r <

1

2
.

Since

φ(b) ≤ r‖b‖
and suppb ⊂ Cr , then we obtain

‖Q∞b‖ ≥ ‖b‖
2

. (5.2)

Fix ã ∈ (0, 1 − a). It is clear that Kã ⊂ Cã−12c. If we define n0 := min{n ∈ N :
an(ã)−12c < r}, then Can0 ã−12c ⊂ Cr . Remembering that Qn+m(((x, i)(y, j)), ·) =
Qm(Qn((x, i)(y, j), ·)) and using the Markov property, we obtain

Q∞((x, i)(y, j), X2) = Q∞(Qn0((x, i)(y, j), X2)).

Then, according to (5.2) and Lemma 3, we obtain

∥∥Q∞((x, i)(y, j), ·)∥∥ = ∥∥(Q∞Qn0)((x, i)(y, j), ·)∥∥ ≥
∥∥Qn0((x, i)(y, j), ·)|Cr

∥∥
2

= Qn0((x, i)(y, j),Cr )

2
≥ Qn0((x, i)(y, j),Can0 ã−12c)

2
≥ γ̄ n0

2

for ((x, i), (y, j)) ∈ Kã . This finishes the proof. ��
The next theorem is partially inspired by the reasoning which can be found in Lemma 2.1

[21]

Theorem 6 Under the hypothesis of Theorem 1, there exist q̃ ∈ (0, 1) and D3 > 0 such that

E(x,i),(y, j)[q̃−τ ] ≤ D3(1 + V̄ ((x, i), (y, j))) for ((x, i), (y, j)) ∈ X2.

Proof Fix ã ∈ (0, 1 − a) and ((x, i), (y, j)) ∈ X2. To simplify notation, we write α =
(a + ã)− 1

2 . Let s be the random moment of the first visit in Kã . Suppose that

s1 = s, sn+1 = sn + s ◦ ϑsn ,

where n ∈ N and ϑn are shift operators on (X2 × {0, 1})∞, i.e.

ϑn(((xk, ik), (yk, jk), θk)k∈N) = ((xk+n, ik+n), (yk+n, jk+n), θk+n)k∈N.
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Theorem 5 implies that every sn is C∞(((x, i), (y, j)), ·)-a.s. finished. The strong Markov
property shows that

E(x,i),(y, j)
[
αs ◦ ϑsn |Fsn

] = E(xsn ,isn ),(ysn , jsn )[αs] for n ∈ N,

where Fsn denotes the σ -algebra on (X2 × {0, 1}) generated by sn and Z = ((xn, in),
(yn, jn))n∈N is the Markov chain with sequence of transition probability functions
({C1(((x, i), (y, j))·) : (x, i), (y, j) ∈ X})i∈N. By Theorem 5 and the definition of Kã ,
we obtain

E(x,i),(y, j)[αsn+1 ] = E(x,i),(y, j)

[
αsn E(xsn ,isn ),(ysn , jsn )[αs]

]

≤ E(x,i),(y, j)
[
αsn
]
(D1�

−12c + D2).

Fix η = D1ã−12c + D2. Consequently,

E(x,i),(y, j)
[
αsn+1

] ≤ ηn E(x,i),(y, j)
[
αs] ≤ ηn

[
D1V̄ ((x, i), (y, j)) + D2

]
. (5.3)

We define τ̂ (((xn, in), (yn, jn), θn)n∈N) = inf{n ∈ N : ((xn, in), (yn, jn)) ∈ Kã, θk =
1 for k ≥ n} and σ = inf{n ∈ N : τ̂ = sn}. By Theorem 5, there is n0 ∈ N such that

Ĉ∞(((x, i), (y, j)), {σ > n}) ≤
(
1 − γ̄ n0

2

)n

for n ∈ N. (5.4)

Let p > 1. By the Hölder inequality, (5.3) and (5.4), we obtain

E(x,i),(y, j)

[
α

τ̂
p

]
≤

∞∑
k=1

E(x,i),(y, j)

[
α

sk
p 1σ=k

]

≤
∞∑
k=1

(
E(x,i),(y, j)

[
αsk
] ) 1

p
(
Ĉ∞(((x, i), (y, j)), {σ = k})

)(1− 1
p

)

≤ [D1V̄ ((x, i), (y, j)) + D2
] 1
p η

− 1
p

∞∑
k=1

η
k
p

(
1 − 1

2
γ̄ n0

)(k−1)
(
1− 1

p

)

= [D1V̄ ((x, i), (y, j))+D2
] 1
p η

− 1
p

(
1−1

2
γ̄ n0

)−
(
1− 1

p

)
∞∑
k=1

[(
η

1− 1
2 γ̄

n0

) 1
p
(
1−1

2
γ̄ n0

)]k
.

For p sufficiently large and q̃ = α
− 1

p , we get

E(x,i),(y, j)

[
q̃−τ̂

]
= E(x,i),(y, j)

[
α

τ̂
p

]
≤ (1 + V̄ ((x, i), (y, j))

)
D3

for some D3. Since τ ≤ τ̂ , we finish the proof. ��

6 Central Limit Theorem: Proof of Theorems 2, 3 and 4

Let {(xn, ξn)}n∈N be the Markov chain given by (3.1) and (3.2) with initial distribution
μ ∈ M2

1 (X), X = Y × I . Let g ∈ L2
0(μ). Define
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1280 K. Horbacz

Sμ
n = g(x1, ξ1) + · · · + g(xn, ξn)√

n
, for n ≥ 1 (6.1)

and let �Sμ
n denote its distribution.

Denote by μ∗ ∈ M1
1(X) an invariant measure for the process {(xn, ξn)}n≥0.

Central Limit Theorems for ergodic stationary Markov chains have already been proven
in many papers. See, for example, Theorem 1 and the subsequent Corollary 1 in Maxwell
and Woodroof [31].

Theorem 7 [31] Let g ∈ L2
0(μ∗). If the following condition is satisfied

∞∑
n=1

n−3/2
(∫

X
(

n−1∑
k=0

∫
X
g(y)�k(x, dy))2μ∗(dx)

)1/2

< ∞, (6.2)

then there exists

σ 2 = σ 2(g) = lim
n→∞ Eμ∗(S

μ∗
n )2 < ∞,

and the sequence of distribution of (Sμ∗
n )n≥0 converges weakly to some random variable with

normal distribution N (0, σ 2).

Proof of Theorem 2 We shall split the proof in 4 steps.
Step 1 Let f ∈ F . Then, there exist q ∈ (0, 1) and D5 > 0 such that

∫
X2

| f (u1, i1) − f (v1, j1)|(�∗
X2�

∗
nĈ

∞(((x, i), (y, j)), ·))(d(u1, i1) × d(v1, j1))

≤ qnD5(1 + V̄ ((x, i), (y, j)))

for every (x, i), (y, j) ∈ X , n ∈ N, where �∗
n : (X2 × {0, 1})∞ → X2 × {0, 1} are the

projections on the n-th component and �∗
X2 : X2 × {0, 1} → X2 is the projection on X2.

For n ∈ N we define sets

A n
2

= {t ∈ (X2 × {0, 1})∞ : τ(t) ≤ n

2
}, Bn

2
= (X2 × {0, 1})∞\A n

2
.

Thus, we have for n ∈ N

Ĉ∞(((x, i), (y, j)), ·) = Ĉ∞(((x, i), (y, j)), ·)|A n
2

+ Ĉ∞(((x, i), (y, j)), ·)|B n
2
.

∣∣∣∣
∫
X2

( f (z1, i1) − f (z2, i2))
(
�∗

X2�
∗
nĈ

∞(((x, i), (y, j)), ·)|A n
2

)
(d(z1, i1) × d(z2, i2))

+
∫
X2

( f (z1, i1) − f (z2, i2))
(
�∗

X2�
∗
nĈ

∞(((x, i), (y, j)), ·)|B n
2

)
(d(z1, i1) × d(z2, i2))

∣∣∣∣
≤
∫
X2

�X ((z1, i1), (z2, i2))
(
�∗

X2�
∗
nĈ

∞(((x, i), (y, j)), ·)|A n
2

)
(d(z1, i1) × d(z2, i2))

+ 2Ĉ∞ (((x, i), (y, j)), Bn
2

)
.
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Note that, by iterative application of (4.12), we obtain∫
X2

�X ((z1, i1), (z2, i2))
(
�∗

X2�
∗
nĈ

∞(((x, i), (y, j)), ·)|A n
2

)
(d(z1, i1), d(z2, i2))

= φ
(
�∗

X2�
∗
n

(
Ĉ∞(((x, i), (y, j)), ·)|A n

2

))

≤ a� n
2 �φ

(
�∗

X2�
∗
� n+1

2 �
(
Ĉ∞(((x, i), (y, j)), ·)|A n

2

))
.

Then it follows from (4.6) and (4.7) that

φ
(
�∗

X2�
∗
� n+1

2 �
(
Ĉ∞(((x, i), (y, j)), ·)|A n

2

))
≤ a� n+1

2 �V̄ ((x, i), (y, j)) + 2c

1 − a

We obtain coupling inequality∫
X2

| f (z1, i1) − f (z2, i2)|
(
�∗

X2�
∗
nĈ

∞(((x, i), (y, j)), ·)
)

(d(z1, i1) × d(z2, i2))

≤ a� n
2 �
[
a� n+1

2 �V̄ ((x, i), (y, j)) + 2c

1 − a

]
+ 2Ĉ∞ (((x, i), (y, j)), Bn

2

)
.

It follows from Theorem 6 and the Chebyshev inequality that

Ĉ∞ (((x, i), (y, j)), Bn
2

)
= Ĉ∞(((x, i), (y, j)),

{
τ >

n

2

}
)

= Ĉ∞(((x, i), (y, j)), {q̃−τ ≥ q̃− n
2 }) ≤ E(x,i),(y, j)[q̃−τ ]

q̃− n
2

≤ q̃
n
2 D3(1 + V̄ ((x, i), (y, j)))

for some q̃ ∈ (0, 1) and D3 > 0. Finally,∫
X2

| f (z1, i1) − f (z2, i2)|(�∗
X2�

∗
nĈ

∞(((x, i), (y, j)), ·))(d(z1, i1) × d(z2, i2))

≤ a� n
2 �D4(1 + V̄ ((x, i), (y, j))) + 2q̃

n
2 D3(1 + V̄ ((x, i), (y, j))),

where D4 = max{a 1
2 , (1− a)−12c}. Setting q := max{a 1

2 , q̃
1
2 } and D5 := D4 + 2D3, gives

our claim.
Step 2 If g : X → R is an arbitrary bounded and Lipschitz function with constant Cg ,

then, there are q ∈ (0, 1) and D5 > 0, exactly the same as in Step 1, for which we obtain∫
X2

|g(z1, i1) − g(z2, i2)|(�∗
X2�

∗
nĈ

∞(((x, i), (y, j)), ·))(d(z1, i1) × d(z2, i2))

≤ GqnD5(1 + V̄ ((x, i), (y, j)))

for every (x, i), (y, j) ∈ X , n ∈ N, where G := max{Cg, supx∈X |g(x)|}.
Let Sμ

n and�Sμ
n be given by (6.1). In particular, Sμ∗

n and S(x,i)
n are defined for the Markov

chains with the same transition probability function � and initial distributions μ∗ and δ(x,i),
respectively. Further, let g : X → R be a bounded and Lipschitz continuous function, with
constant Cg , which satisfies 〈g, μ∗〉 = 0.

Step 3 Let g : X → R be a bounded and Lipschitz continuous function with constant Cg .
Additionally, 〈g, μ∗〉 = 0. Then,

∞∑
n=1

n−3/2
[ ∫

X

( n−1∑
k=0

〈g, Pkδ(x,i)〉
)2

μ∗(d(x, i))
]1/2

< ∞. (6.3)
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Note that, by Step 1 and Step 2,

n−1∑
k=0

〈
g, Pkδ(x,i)

〉
=

n−1∑
k=0

( 〈
g, Pkδ(x,i)

〉
− 〈g, μ∗〉

)

=
n−1∑
k=0

∫
X

[ ∫
X
g(z, k)(�k((x, i), ·) − �k((y, j), ·))(d(z, k))

]
μ∗(d(y, j))

=
n−1∑
k=0

∫
X

[ ∫
X2

(g(z1, i1) − g(z2, i2))(�
∗
X2�

∗
k Ĉ

∞(((x, i), (y, j)), ·))

(d(z1, i1) × d(z2, i2))
]
μ∗(d(y, j))

≤
n−1∑
k=0

GqnD5

∫
X2

(1 + V̄ ((x, i), (y, j)))μ∗(d(y, j)).

Then, for every (x, i) ∈ X , n ∈ N,

n−1∑
k=0

〈g, Pkδ(x,i)〉 ≤ GD5
1 − qn

1 − q

∫
X2

(1 + V̄ ((x, i), (y, j)))μ∗(d(y, j))

≤ D9(1 + V ((x, i))),

where C9 := GD5(1 − q)−1(1 + ∫
X V ((y, j))μ∗(d(y, j))). Since μ∗ has finite second

moment, we obtain that (6.3) is not bigger than

∞∑
n=1

n−3/2 [D2
9

〈
1 + 2V + V 2, μ∗

〉]1/2
< ∞.

Hence, assumptions of Theorem 7 are satisfied
Step 4 Hence, by applying Theorem 7, we obtain that �Sμ∗

n converges to the normal
distribution in Levy metric, as n → ∞, which equivalently means that the distributions
converge weakly to each other (see [8]).

Note that, to complete the proof of Theorem 2, it is enough to establish that�Sμ
n converges

weakly to �Sμ∗
n , as n → ∞. Equivalently, it is enough to show that limn→∞ ‖�Sμ

n −
�Sμ∗

n ‖FM = 0, since weak convergence is metrised by the Fourtet-Mourier norm.
Set (x, i), (y, j) ∈ X and choose arbitrary f ∈ F . Suppose that we know that the

following convergence is satisfied, as n → ∞,
∣∣∣
∫
R

f (u)�S(x,i)
n (du) −

∫
R

f (v)�S(y, j)
n (dv)

∣∣∣→ 0. (6.4)

Then, by the Dominated Convergence Theorem, we obtain
∣∣∣
∫
R

f (u)�Sμ
n (du) −

∫
R

f (v)�Sμ∗
n (dv)

∣∣∣
≤
∫
X

∫
X

∣∣∣
∫
R

f (u)�S(x,i)
n (du) −

∫
R

f (v)�S(y, j)
n (dv)

∣∣∣μ(d(x, i))μ∗(d(y, j)) → 0,

(6.5)

as n → ∞. Note that, by Theorem 11.3.3 in [7], (6.5) implies that �Sμ
n converges weakly

to �Sμ∗
n , as n → ∞, which completes the proof of the CLT in the model. Now, it remains to
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show (6.4). Note that
∣∣∣
∫
R

f (u)�S(x,i)
n (du) −

∫
R

f (v)�S(y, j)
n (dv)

∣∣∣
=
∣∣∣
∫
Xn

f
(g(u1, i1) + · · · + g(un, in)√

n

)
�n((x, i), d(u1, i1) × · · · × d(un, in))

−
∫
Xn

f
(g(u1, i1) + · · · + g(un, in)√

n

)
�n((y, j), d(u1, i1) × · · · × d(un, in))

∣∣∣, (6.6)

We may write
∣∣∣
∫
Xn

∫
Xn

[
f
(g(u1, i1) + · · · + g(un, in)√

n

)
− f

(g(v1, j1) + · · · + g(vn, jn)√
n

)]

�n((x, i), d(u1, i1) × · · · × d(un, in))�
n((y, j), d(v1, j1) × · · · × d(vn, jn))

∣∣∣
≤
∫

(X2)n

∣∣∣ f
(g(u1, i1) + · · · + g(un, in)√

n

)
− f

(g(v1, j1) + · · · + g(vn, jn)√
n

)∣∣∣
(
�∗

X2n�
∗
1,...,nĈ

∞(((x, i), (y, j)), ·)
)
(d(u1, i1) × · · · × d(un, in)

× d(v1, j1) × · · · × d(vn, jn)), (6.7)

where �∗
n : (X2 × {0, 1})∞ → (X2 × {0, 1})n are the projections on the first n components

and �∗
X2n : (X2 × {0, 1})n → X2n is the projection on X2n . Since f is Lipschitz with

constant C f , we may further estimate (6.7) as follows

C f√
n

∫
X2n

[
|g(u1, i1) − g(v1, j1)| + · · · + |g(un, in) − g(vn, jn)|

]

(�∗
X2n�

∗
nĈ

∞(((x, i), (y, j)), ·)
)
((d(uk, ik) × d(vk, jk))

n
k=1)

= C f√
n

n∑
i=1

∫
X2

|g(uk, ik) − g(vk, jk)|(�∗
X2�

∗
i Ĉ

∞(((x, i), (y, j)), ·))

× (d(uk, ik) × d(vk, jk)).

��
Now, for every 1 ≤ i ≤ n, we refer to Step 1 and Step 2 to obseve that (6.7) is not bigger
than

C f G√
n

n∑
i=1

qi D5(1 + V̄ ((x, i), (y, j))) = n− 1
2C f GD5q

1 − qn

1 − q
(1 + V̄ ((x, i), (y, j))).

thanks to the upper bound of (6.6). We go with n to infinity and obtain (6.4). The proof is
complete.

Proof of Theorem 3 Let μ ∈ M2
1 (X). Fix (x, i) ∈ X .

UV 2(x, i) ≤
∑
j∈I

∑
θ∈


∫ +∞

0
2�2(qθ

(
Tj (t, x)

)
, qθ

(
Tj (t, x∗)

)
)λe−λt pi j (x) p̃θ

(
Tj (t, x)

)
dt

+
∑
j∈I

∑
θ∈


∫ +∞

0
4�2(qθ

(
Tj (t, x∗)

)
, qθ (x∗))λe−λt pi j (x) p̃θ

(
Tj (t, x)

)
dt
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+
∑
j∈I

∑
θ∈


∫ +∞

0
4�2(qθ (x∗), x∗)λe−λt pi j (x) p̃θ

(
Tj (t, x)

)
dt.

Further, using (3.17), (3.18) and (3.14) for all i0 ∈ I and θ0 ∈ 
, we obtain

UV 2(x, i) ≤ γ V 2(x, i) + β,

where

γ = 2λ(LLq)
2

λ − 2α
< 1,

β = 4L2
q

∑
j∈I

∑
θ∈


∫ +∞

0
λe−λt�2(Tj (t, x∗), x∗) dt + 4

∑
θ∈


�2(qθ (x∗), x∗).

Since
〈
V 2, Pμ

〉 ≤ γ
〈
V 2, μ

〉+ β,

thus
〈
V 2, Pnμ

〉 ≤ γ n 〈V 2, μ
〉+ β

1 − γ
.

We take a non-decreasing sequence (V 2
k )k∈N such that V 2

k (y) = min{k, V 2(y)}, for every
k ∈ N and y ∈ Y . We know that Pnμ converges weakly to μ∗. Hence, for all k ∈ N,
V 2
k ∈ C(X) and

lim
n→∞

〈
V 2
k , Pnμ

〉 = 〈V 2
k , μ∗

〉 ≤ β

1 − γ

so the sequence (
〈
V 2
k , μ∗

〉
)k∈N is bounded. Because (V 2

k )k∈N is non-negative and non-
decreasing, we may use the Monotone Convergence Theorem to obtain

〈
V 2, μ∗

〉 = lim
k→∞

〈
V 2
k , μ∗

〉

so, indeed, μ∗ is with finite second moment. ��
Proof of Theorem 4 Theorem 1 implies that there exists an invariant measure μ∗ ∈ M1(X)

for the Markov operator P given by (3.6). By Theorem 5.3.1 [17], μ0 = Gμ∗, where

Gμ(A) =
∑
i∈I

∫

Y×I

+∞∫

0

1A(Ti (t, x), i)pki (x)λe
−λt dtμ(dx, dk), A ∈ BX , μ ∈ M1(X),

is an invariant measure for the Markov semigroup {Pt }t≥0 given by (3.8). Define

G̃ f (x, i) =
∑
i∈I

+∞∫

0

f (Ti (t, x), i)pki (x)λe
−λt dt for f ∈ B(X),

then 〈 f,Gμ〉 =
〈
G̃ f, μ

〉
. For every f ∈ B(X), we set

Ũn f =
n−1∑
k=0

f (xk, ξk), Ut f =
∫ t

0
f (X (s), ξ(s))ds
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and

K̃ f = 1

λ
G̃ f, Nt =

+∞∑
i=1

1{t≥τi }

Decomposing [0, t] along the jumps yields, we obtain

1

ta
Ut f =

(
Nt

t

)a [ 1

(Nt )a

Nt−1∑
i=0

∫ τi+1

τi

f (X (s), ξ(s))ds−Rt

]
, for a = 1 or a = 1

2
, (6.8)

where ‖Rt‖ ≤ ‖ f ‖ τNt+1−τNt
Nt

.

For n ∈ N and f ∈ B(X) we define

Mn =
n−1∑
i=0

(∫ τi+1

τi

f (X (s), ξ(s))ds − K̃ f (xi , ξi )

)

and Fn = σ((
τi , xi , ξi ) : i ≤ n). (6.9)

Using (6.8), it is easy to check that

1

ta
Ut f −

(
1

Nt

)a
ŨNt G̃ f

=
(
Nt

t

)a ( 1

(Nt )a

Nt−1∑
i=0

(∫ τi+1

τi

f (X (s), ξ(s))ds − K̃ f (xi , ξi )

))

−
(

λa −
(
Nt

t

)a)⎛⎝ 1

(Nt )a

Nt−1∑
i=0

K̃ f (xi , ξi )

⎞
⎠+

(
Nt

t

)a
Rt

=
(
Nt

t

)a ( 1

(Nt )a
MNt

)
−
(

λa −
(
Nt

t

)a)⎛⎝ 1

(Nt )a

Nt−1∑
i=0

K̃ f (xi , ξi )

⎞
⎠+

(
Nt

t

)a
Rt .

(6.10)

Since
∫ τi+1

τi

f (X (s), ξ(s))ds =
∫ 
τi

0
f (Tξi+1(s, xi ), ξi+1)ds for i ≥ 0,

(Mn,Fn)n∈N is a martingale with increments in L2: E((Mn+1 − Mn)
2) ≤ 6‖ f ‖

λ2
. Therefore,

by the strong law of large numbers for martingales

lim
n→∞

Mn

n
= 0 almost surely. (6.11)

Let us observe that, limt→∞ Nt
t = λ and limt→∞ Rt = 0 almost surely, from (6.10) for

a = 1 and (6.11), we have

lim
t→∞

1

t
Ut f − 1

Nt
ŨNt G̃ f = 0 for f ∈ B(X) (6.12)

with probability one.
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Note that, G̃ f ∈ Lipb(X) for f ∈ Lipb(X), by applying Theorem 1, we obtain

lim
n→∞

1

Nt
ŨNt G̃ f = lim

t→∞
1

Nt

Nt−1∑
k=0

G̃ f (xk, ξk) = 〈G̃ f, μ∗〉 = 〈 f,Gμ∗〉 = 〈 f, μ0〉,

Px0,ξ0 almost surely. Therefore, by (6.12), we have

lim
t→∞

1

t

∫ t

0
f (X (s), ξ(s))ds = 〈 f, μ0〉.

The proof of Theorem 4 (i) is complete. ��
Moreover, for f ∈ Lipb(X)

1

n

n∑
k=1

E((Mk+1 − Mk)
2|Fk) = 1

n

n∑
k=1

(H f − K̃ 2 f )(xk, ξk),

where the operators H and K̃ are given by (3.19). Since H f − K̃ 2 f ∈ Lipb(X) for f ∈
Lipb(X), by Theorem 1

lim
n→∞

1

n

n∑
k=1

(H f − K̃ 2 f )(xk, ξk) = 〈H f − K̃ 2 f, μ∗〉 = σ 2
1

Thus, all assumptions of Theorem A.1 [40] are satisfied. By the Central Limit Theorem for
martingales, Mn√

n
converges in distribution to some random variable with normal distribution

N (0, σ 2
1 ), as n → ∞.

Furthermore, from (6.10) for a = 1
2 and Theorem A.1 [40], we obtain

1√
t
Ut f − 1√

Nt
ŨNt G̃ f (6.13)

converges in distribution to some random variable with normal distribution N (0, σ 2
1 ), as

n → ∞.

Finally, let f : Y → R be a bounded and Lipschitz continuous function such that
〈 f, μ0〉 = 0, then 〈G̃ f, μ∗〉 = 0. By (6.13) and Theorem 2 we obtain CLT for the process
(X (t), ξ(t)){t≥0}.

7 Applications

Example 1 Poisson driven stochastic differential equation.

Poisson driven stochastic differential equations are quite important in applications. For
example the whole book of [34] , is devoted to the applications of these equations in physics
and engineering. Applications in biomathematics (population dynamics) can be found in the
papers of [6]. Consider stochastic differential equations driven by jump-type processes [28].
They are typically of the form

dX (t) = a(X (t), ξ(t))dt +
∫




b(X (t), θ)Np(dt, dθ) for t ≥ 0 (7.1)

with the initial condition
X (0) = x0, (7.2)
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where {X (t)}t≥0 is a stochastic process with values in a separable Banach space (Y, ‖ · ‖),
or more explicitly

X (t) = x0 +
∫ t

0
a(X (s), ξ(s))ds +

∫ t

0

∫



b(X (s−), θ)Np(ds, dθ) for t ≥ 0 (7.3)

with probability one. HereNp is a Poisson random countingmeasure, {ξ(t)}t≥0 is a stochastic
process with values in a finite set I = {1, . . . , N }, the solution {X (t)}t≥0 has values in Y and
is right-continuous with left-hand limits, i.e. X (t) = X (t+) = lims→t+ X (s), for all t ≥ 0
and the left-hand limits X (t−) = lims→t− X (s) exist and are finite for all t > 0 (equalities
here mean equalities with probability one).

In our study we make the following assumptions:
On a probability space (�,�,P) there is a sequence of random variables {τn}n≥0 such that

the variables 
τn = τn − τn−1, where τ0 = 0, are nonnegative, independent, and identically
distributed with the density distribution function g(t) = λe−λt for t ≥ 0.

Let {ηn}n∈N be a sequence of independent identically distributed random elements with
values 
 = {1, . . . , K }; their distribution will be denote by ν. We assume that the sequences
{τn}n≥0 and {ηn}n≥0 are independent, which implies that the mapping ω → p(ω) =
(τn(ω), ηn(ω))n≥0 defines a stationary Poisson point process. Then for every measurable
set Z ⊂ 
 the random variable

Np((0, t] × Z) = #{i : (τi , ηi ) ∈ Z}
is Poisson distributed with parameter λtν(Z).Np is called a Poisson random counting mea-
sure.

The coefficient a : Y × I → Y , I = {1, . . . , N }, is Lipschitz continuous with respect to
the first variable.

We define qθ : Y → Y by qθ (x) = x + b(x, θ) for x ∈ Y, θ ∈ 
.

For every i ∈ I , denote by vi (t) = Ti (t, x) the solution of the unperturbed Cauchy
problem

v′
i (t) = a(vi (t), i) and vi (0) = x, x ∈ Y. (7.4)

Suppose that [pi j ]i, j∈I , pi j : Y → [0, 1] is a probability matrix, there exists γ 1 > 0 such
that

N∑
j=1

|pi j (x) − pi j (y)| ≤ γ 1‖x − y‖ for x, y ∈ Y,

and [pi ]i∈I , pi : Y → [0, 1] is a probability vector.
Consider a sequence of random variables {xn}n≥0, xn : � → Y and a stochastic process

{ξ(t)}t≥0, ξ(t) : � → I (describing random switching at random moments τn) such that

xn = qηn (Tξ(τn−1)(τn − τn−1, xn−1)),

P{ξ(0) = k|x0 = x} = pk(x),

P{ξ(τn) = s|xn = y, ξ(τn−1) = i} = pis(y), for n = 1, . . .

and

ξ(t) = ξ(τn−1) for τn−1 ≤ t < τn, n = 1, 2, . . . (7.5)

The solution of (7.3) is now given by

X (t) = Tξ(τn−1)(t − τn−1, xn−1) for τn−1 ≤ t < τn, n = 1, 2, . . . (7.6)
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The stochastic process {(X (t), ξ(t)}t≥0, (X (t), ξ(t)) : � → Y × I is a Markov process
and it generates the semigroup {T t }t≥0 defined by

T t f (x, i) = E(x,i)( f (X (t), ξ(t))) for f ∈ C(Y × I ),

with the corresponding semigroup of Markov operators {Pt }t≥0 , Pt : M1(Y × I ) →
M1(Y × I ) satisfying

〈Ptμ, f 〉 = 〈μ, T t f 〉 for f ∈ B(Y × I ), μ ∈ M1(Y × I ) and t ≥ 0. (7.7)

In the case when the coefficient a : Rd × I → R
d does not depend on the second variable,

we obtain the stochastic equation considered by Traple [36], Szarek andWȩdrychowicz [35].
Inmanyapplicationswearemostly interested in values of the solution X (t) at the switching

points τn . Setting

μn(A) = P((X (τn), ξ(τn)) ∈ A) for A ∈ BY×I ,

we obtain μn+1 = Pμn , n ∈ N, where P is given by

Pμ(A) =
∑
j∈I

∫



∫
Y×I

∫
R+

λe−λt1A(q(� j (t, x), θ), j)pi j (x)dtdν(θ)dμ(x, i) (7.8)

for A ∈ BY×I and μ ∈ M1(Y × I ).
Assume that there exist positive constants Lq , L , α and x∗ ∈ Y such that

‖qθ (x) − qθ (y)‖ ≤ Lq‖x − y‖, for θ ∈ 
, x, y ∈ Y,

‖Tj (t, x) − Tj (t, y)‖ ≤ Leαt‖x − y‖, for j ∈ I, t ≥ 0, x, y ∈ Y,

inf
i∈I infx∈Y pi j (x) > 0
∫ +∞

0
e−λt‖Tj (t, x∗) − x∗‖2dt < ∞ for j ∈ I.

If

(LLq)
2 + α

λ
<

1

2
,

then there exists a unique invariantmeasureμ∗ ∈ M2
1 (Y×I ) for the chain {(X (τn), ξ(τn))}n≥0,

which is exponentially attractive in M1
1 (Y × I ) and the Central Limit Theorem for the

processes {(X (τn), ξ(τn))}n≥0 and {(X (t), ξ(t))}t≥0 holds.

Example 2 Iterated Function Systems.

Let (Y, �) be a Polish space. An iterated function system (IFS) consists of a sequence of
continuous transformations

qθ : Y → Y, θ = 1, . . . , K

and a probability vector

p̃θ : Y → [0, 1], θ = 1, . . . , K .

Such a system is briefly denoted by (q, p̃)K = (q1, . . . , qK , p̃1, . . . , p̃K ). The action of an
IFS can be roughly described as follows.We choose an initial point x0 andwe randomly select
from the set 
 = {1, . . . , K } an integer θ0 in such a way that the probability of choosing θ0
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is p̃θ0(x0). If a number θ0 is drawn, we define x1 = qθ0(x0). Having x1 we select θ1 in such
a way that the probability of choosing θ1 is p̃θ1(x1). Now we define x2 = qθ1(x1) and so on.

An IFS is a particular example of a random dynamical system with randomly chosen
jumps. Consider a dynamical system of the form I = {1} and T1(t, x) = x for x ∈ Y ,
t ∈ R+. Moreover assume that p1(x) = 1 and p11(x) = 1 for x ∈ Y . Then we obtain an IFS
(q, p̃)K .

Denoting by μ̃n , n ∈ N, the distribution of xn , i.e., μ̃n(A) = P(xn ∈ A) for A ∈ BY , we
define P̃ as the transition operator such that μ̃n+1 = P̃μ̃n for n ∈ N. The transition operator
corresponding to iterated function system (q, p̃)K is given by

P̃μ(A) =
∑
θ∈


∫
Y
1A
(
qθ (x)

)
p̃θ (x) μ(dx) for A ∈ BY , μ ∈ M1(Y ). (7.9)

If there exist positive constants Lq and γ

∑
θ∈


p̃θ (x)�(qθ (x), qθ (y)) ≤ Lq�(x, y) for x, y ∈ Y,

∑
θ∈


| p̃θ (x) − p̃θ (y)| ≤ γ �(x, y) for x, y ∈ Y

with Lq < 1 then from Theorem 1 we obtain existence of an invariant measure μ∗ ∈ M1
1 (Y )

for the Markov operator P̃ , which is attractive in M1(Y ), exponentially attractive in M1
1 (Y ).

If Lq <
√
2
2 then by Theorem 3 the invariant measure μ∗ has finite second moment and by

Theorem 2 the Central Limit Theorem for iterated function systems (q, p̃) holds.

Example 3 Let q1 and q1 be two maps from [0, 1] into inself defined by

q1(x) = βx and q2(x) = βx + (1 − β)

where 0 < β < 1 is a constant parameter. Consider the Markov chain with the transition
probability

�(x, A) = p(x)1A(q1(x)) + (1 − p(x))1A(q2(x)), x ∈ [0, 1], A ∈ B[0,1],

where p : [0, 1] → [0, 1] is a Lipschitz function.
The case when p(x) = 1

2 for x ∈ [0, 1] and β = 1
2 , where the uniform distribution

on [0, 1] is the unique stationary distribution, and the case when p(x) = 1
2 for x ∈ [0, 1]

and β = 1
3 , where the uniform distribution on the (middle third) Cantor set is the unique

stationary distribution, are two important particular cases of this model.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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