15 research outputs found
The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease
The extra cellular matrix (ECM) of the normal artery wall is a collection of fibrous proteins and associated glycoproteins embedded in a hydrated ground substance of glycosaminoglycans and proteoglycans. These distinct molecules are organized into a highly ordered network that are closely associated with the vascular cells that produce them. In addition to providing the architectural framework for the artery wall that imparts mechanical support and viscoelasticity, the ECM can regulate the behaviour of vascular cells, including their ability to migrate, proliferate and survive injury. The composition of the ECM is different within intimal lesions of atherosclerosis, which are composed of monocytes and lymphocytes from the circulation and smooth muscle cells (SMC) that migrate from the media to the intima (Ross 1993, 1999), and these differences may contribute to the altered phenotype of vascular cells within lesions. This review will briefly outline the ECM changes observed in atherosclerosis and restenosis and the potential relationship of these changes to altered vascular cell functions
The evolutionary ecology of fatty-acid variation : Implications for consumer adaptation and diversification
The nutritional diversity of resources can affect the adaptive evolution of consumer metabolism and consumer diversification. The omega-3 long-chain polyunsaturated fatty acids eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) have a high potential to affect consumer fitness, through their widespread effects on reproduction, growth and survival. However, few studies consider the evolution of fatty acid metabolism within an ecological context. In this review, we first document the extensive diversity in both primary producer and consumer fatty acid distributions amongst major ecosystems, between habitats and amongst species within habitats. We highlight some of the key nutritional contrasts that can shape behavioural and/or metabolic adaptation in consumers, discussing how consumers can evolve in response to the spatial, seasonal and community-level variation of resource quality. We propose a hierarchical trait-based approach for studying the evolution of consumers' metabolic networks and review the evolutionary genetic mechanisms underpinning consumer adaptation to EPA and DHA distributions. In doing so, we consider how the metabolic traits of consumers are hierarchically structured, from cell membrane function to maternal investment, and have strongly environment-dependent expression. Finally, we conclude with an outlook on how studying the metabolic adaptation of consumers within the context of nutritional landscapes can open up new opportunities for understanding evolutionary diversification