40 research outputs found

    Limitations of light delay and storage times in EIT experiments with condensates

    Full text link
    We investigate the limitations arising from atomic collisions on the storage and delay times of probe pulses in EIT experiments. We find that the atomic collisions can be described by an effective decay rate that limits storage and delay times. We calculate the momentum and temperature dependence of the decay rate and find that it is necessary to excite atoms at a particular momentum depending on temperature and spacing of the energy levels involved in order to minimize the decoherence effects of atomic collisions.Comment: 4 pages RevTeX, 4 figures. Send correspondence to [email protected]

    Universal physics of 2+1 particles with non-zero angular momentum

    Full text link
    The zero-energy universal properties of scattering between a particle and a dimer that involves an identical particle are investigated for arbitrary scattering angular momenta. For this purpose, we derive an integral equation that generalises the Skorniakov - Ter-Martirosian equation to the case of non-zero angular momentum. As the mass ratio between the particles is varied, we find various scattering resonances that can be attributed to the appearance of universal trimers and Efimov trimers at the collisional threshold.Comment: 6 figure

    Transverse Fresnel-Fizeau drag effects in strongly dispersive media

    Full text link
    A light beam normally incident upon an uniformly moving dielectric medium is in general subject to bendings due to a transverse Fresnel-Fizeau light drag effect. In conventional dielectrics, the magnitude of this bending effect is very small and hard to detect. Yet, it can be dramatically enhanced in strongly dispersive media where slow group velocities in the m/s range have been recently observed taking advantage of the electromagnetically induced transparency (EIT) effect. In addition to the usual downstream drag that takes place for positive group velocities, we predict a significant anomalous upstream drag to occur for small and negative group velocities. Furthermore, for sufficiently fast speeds of the medium, higher order dispersion terms are found to play an important role and to be responsible for peculiar effects such as light propagation along curved paths and the restoration of the spatial coherence of an incident noisy beam. The physics underlying this new class of slow-light effects is thoroughly discussed

    Generation of vortices and observation of Quantum Turbulence in an oscillating Bose-Einstein Condensate

    Full text link
    We report on the experimental observation of vortex formation and production of tangled vortex distribution in an atomic BEC of Rb-87 atoms submitted to an external oscillatory perturbation. The oscillatory perturbations start by exciting quadrupolar and scissors modes of the condensate. Then regular vortices are observed finally evolving to a vortex tangle configuration. The vortex tangle is a signature of the presence of a turbulent regime in the cloud. We also show that this turbulent cloud has suppression of the aspect ratio inversion typically observed in quantum degenerate bosonic gases during free expansion.Comment: to appear in JLTP - QFS 200

    Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    Full text link
    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser and a strong classical coupling laser, which form a three-level Lambda-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency (EIT) with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and inter-atomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states.Comment: 9 pages, 1 figur

    Common variants near MC4R are associated with fat mass, weight and risk of obesity.

    Get PDF
    To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Remote Doctoral Supervision Experiences : Challenges and Affordances

    Get PDF
    The global pandemic has forced academics to engage in remote doctoral supervision, and the need to understand this activity is greater than ever before. This contribution involved a cross-field review on remote supervision pertinent in the context of a global pandemic. We have utilised the results of an earlier study bringing a supervision model into a pandemic-perspective integrating studies published about and during the pandemic. We identified themes central to remote supervision along five theory-informed dimensions, namely intellectual/cognitive, instrumental, professional/technical, personal/emotional and ontological dimensions, and elaborate these in the light of the new reality of remote supervision.Peer reviewe

    Spacecraft Charging Model

    No full text
    corecore