406 research outputs found
Planet Signatures in Collisionally Active Debris Discs: scattered light images
Planet perturbations are often invoked as a potential explanation for many
spatial structures that have been imaged in debris discs. So far this issue has
been mostly investigated with collisionless N-body numerical models. We
numerically investigate how the coupled effect of collisions and radiation
pressure can affect the formation and survival of radial and azimutal
structures in a disc perturbed by a planet. We consider two set-ups: a planet
embedded within an extended disc and a planet exterior to an inner debris ring.
We use the DyCoSS code of Thebault(2012) and derive synthetic images of the
system in scattered light. The planet's mass and orbit, as well as the disc's
collisional activity are explored as free parameters.
We find that collisions always significantly damp planet-induced structures.
For the case of an embedded planet, the planet's signature, mostly a density
gap around its radial position, should remain detectable in head-on images if
M_planet > M_Saturn. If the system is seen edge-on, however, inferring the
presence of the planet is much more difficult, although some planet-induced
signatures might be observable under favourable conditions.
For the inner-ring/external-planet case, planetary perturbations cannot
prevent collision-produced small fragments from populating the regions beyond
the ring: The radial luminosity profile exterior to the ring is close to the
one it should have in the absence of the planet. However, a Jovian planet on a
circular orbit leaves precessing azimutal structures that can be used to
indirectly infer its presence. For a planet on an eccentric orbit, the ring is
elliptic and the pericentre glow effect is visible despite of collisions and
radiation pressure, but detecting such features in real discs is not an
unambiguous indicator of the presence of an outer planet.Comment: Accepted for Publication in A&A (NOTE: Abridged abstract and
(very)LowRes Figures. Better version, with High Res figures and full abstract
can be found at http://lesia.obspm.fr/perso/philippe-thebault/planpapph.pdf
Planet formation in Binaries
Spurred by the discovery of numerous exoplanets in multiple systems, binaries
have become in recent years one of the main topics in planet formation
research. Numerous studies have investigated to what extent the presence of a
stellar companion can affect the planet formation process. Such studies have
implications that can reach beyond the sole context of binaries, as they allow
to test certain aspects of the planet formation scenario by submitting them to
extreme environments. We review here the current understanding on this complex
problem. We show in particular how each of the different stages of the
planet-formation process is affected differently by binary perturbations. We
focus especially on the intermediate stage of kilometre-sized planetesimal
accretion, which has proven to be the most sensitive to binarity and for which
the presence of some exoplanets observed in tight binaries is difficult to
explain by in-situ formation following the "standard" planet-formation
scenario. Some tentative solutions to this apparent paradox are presented. The
last part of our review presents a thorough description of the problem of
planet habitability, for which the binary environment creates a complex
situation because of the presence of two irradation sources of varying
distance.Comment: Review chapter to appear in "Planetary Exploration and Science:
Recent Advances and Applications", eds. S. Jin, N. Haghighipour, W.-H. Ip,
Springer (v2, numerous typos corrected
Study of the microstructure resulting from brazed aluminium materials used in heat exchangers
Re-solidification of AA4343 cladding after brazing as well as the related precipitation in the modified AA3003 core material have been investigated. Analysis of the re-solidified material showed that partial dissolution of the core alloy occurs in both the brazing joints and away of them. Far from the brazing joints, the dissolution is, however, limited and diffusion of silicon from the liquid into the core material leads to solid-state precipitation in the so-called “band of dense precipitates” (BDP). On the contrary, the dissolution is enhanced in the brazing joint to such an extent that no BDP could be observed. The intermetallic phases present in the resolidified areas as well as in the core material have been analyzed and found to be mainly cubic alpha-Al(Mn,Fe)Si. These results were then compared to predictions made with available phase diagram information
<i>Herschel</i> observations of the debris disc around HIP 92043
Context. Typical debris discs are composed of particles ranging from several micron sized dust grains to km sized asteroidal bodies, and their infrared emission peaks at wavelengths 60-100 μm. Recent Herschel DUNES observations have identified several debris discs around nearby Sun-like stars (F, G and K spectral type) with significant excess emission only at 160 μm.
Aims. We observed HIP 92043 (110 Her, HD 173667) at far-infrared and sub-millimetre wavelengths with Herschel PACS and SPIRE. Identification of the presence of excess emission from HIP 92043 and the origin and physical properties of any excess was undertaken through analysis of its spectral energy distribution (SED) and the PACS images.
Methods. The PACS and SPIRE images were produced using the HIPE photProject map maker routine. Fluxes were measured using aperture photometry. A stellar photosphere model was scaled to optical and near infrared photometry and subtracted from the far-infared and sub-mm fluxes to determine the presence of excess emission. Source radial profiles were fitted using a 2D Gaussian and compared to a PSF model based on Herschel observations of α Boo to check for extended emission.
Results. Clear excess emission from HIP 92043 was observed at 70 and 100 μm. Marginal excess was observed at 160 and 250 μm. Analysis of the images reveals that the source is extended at 160 μm. A fit to the source SED is inconsistent with a photosphere and single temperature black body.
Conclusions. The excess emission from HIP 92043 is consistent with the presence of an unresolved circumstellar debris disc at 70 and 100 μm, with low probability of background contamination. The extended 160 μm emission may be interpreted as an additional cold component to the debris disc or as the result of background contamination along the line of sight. The nature of the 160 μm excess cannot be determined absolutely from the available data, but we favour a debris disc interpretation, drawing parallels with previously identified cold disc sources in the DUNES sample
Differential role of TRP channels in prostate cancer
Abstract A major clinical problem with PC (prostate cancer) is the cell's ability to survive and proliferate upon androgen withdrawal. Indeed, deregulated cell differentiation and proliferation, together with the suppression of apoptosis, provides the condition for abnormal tissue growth. Here, we examine the differential role of TRP (transient receptor potential) channels in the control of Ca 2+ homoeostasis and growth of PC cells
Theoretical dynamic model of norovirus by consumption of contaminated oyster and by inter-human transmission
Noroviruses are involved in winter gastroenteritis epidemics but also in foodborne outbreaks associated with consumption of contaminated oysters. The aim of this work was to better assess the relative effect of inter-human and oyster transmission in coastal populations. Quantitative Risk Assessment was used in order to evaluate food borne transmission. The dose-response, which was estimated from published foodborne outbreaks, illustrates the high infectivity of these viruses. A dynamic model was built that takes into account the two transmission pathways. Initial results show the effect of foodborne pathway on the total number of cases during winter epidemics, and on the cases due to genogroup I and II viruses. This model, based on hypotheses and published data, needs to be further improved in the future, based on real observations data, so as to better assess its use for risk management of shellfish coastal areas.Les norovirus sont impliqués dans les épidémies de gastro-entérites hivernales mais aussi dans les toxiinfections collectives (TIAC) liées à l'ingestion d'huîtres contaminées. L'objectif de cette étude est d'évaluer l'impact de la transmission alimentaire vis-à-vis de la transmission inter-interhumaine dans une population côtière. La transmission alimentaire a été abordée par une Appréciation Quantitative des Risques. Une dose-réponse établie sur des données publiées de TIAC montre la forte infectiosité des norovirus. Un modèle dynamique prenant en compte les deux modes de transmission a été construit. Les premiers résultats montrent que la voie alimentaire peut avoir un impact sur le nombre de cas total en période épidémique et sur les cas attribués au génogroupe I et II. Le modèle, basé sur des hypothèses et des données publiées, devra être poursuivi par un ajustement à des données observées, afin de mieux évaluer la pertinence de mesures de gestion des zones conchylicoles
Against all odds? Forming the planet of the HD196885 binary
HD196885Ab is the most "extreme" planet-in-a-binary discovered to date, whose
orbit places it at the limit for orbital stability. The presence of a planet in
such a highly perturbed region poses a clear challenge to planet-formation
scenarios. We investigate this issue by focusing on the planet-formation stage
that is arguably the most sensitive to binary perturbations: the mutual
accretion of kilometre-sized planetesimals. To this effect we numerically
estimate the impact velocities amongst a population of circumprimary
planetesimals. We find that most of the circumprimary disc is strongly hostile
to planetesimal accretion, especially the region around 2.6AU (the planet's
location) where binary perturbations induce planetesimal-shattering of
more than 1km/s. Possible solutions to the paradox of having a planet in such
accretion-hostile regions are 1) that initial planetesimals were very big, at
least 250km, 2) that the binary had an initial orbit at least twice the present
one, and was later compacted due to early stellar encounters, 3) that
planetesimals did not grow by mutual impacts but by sweeping of dust (the
"snowball" growth mode identified by Xie et al., 2010b), or 4) that HD196885Ab
was formed not by core-accretion but by the concurent disc instability
mechanism. All of these 4 scenarios remain however highly conjectural.Comment: accepted for publication by Celestial Mechanics and Dynamical
Astronomy (Special issue on EXOPLANETS
Développement d'un outil informatique opérationnel d'aide à la décision et de modélisation des pollutions en Méditerranée
National audienc
- …