139 research outputs found
Statistical Analysis of Precipitation Events
In the present paper we demonstrate the results of a statistical analysis of
some characteristics of precipitation events and propose a kind of a
theoretical explanation of the proposed models in terms of mixed Poisson and
mixed exponential distributions based on the information-theoretical entropy
reasoning. The proposed models can be also treated as the result of following
the popular Bayesian approach.Comment: 5 pages, 4 figures; ICNAAM 201
Recommended from our members
Review and assessment of latent and sensible heat flux accuracy over the global oceans
For over a decade, several research groups have been developing air-sea heat flux information over the global ocean, including latent (LHF) and sensible (SHF) heat fluxes over the global ocean. This paper aims to provide new insight into the quality and error characteristics of turbulent heat flux estimates at various spatial and temporal scales (from daily upwards). The study is performed within the European Space Agency (ESA) Ocean Heat Flux (OHF) project. One of the main objectives of the OHF project is to meet the recommendations and requirements expressed by various international programs such as the World Research Climate Program (WCRP) and Climate and Ocean Variability, Predictability, and Change (CLIVAR), recognizing the need for better characterization of existing flux errors with respect to the input bulk variables (e.g. surface wind, air and sea surface temperatures, air and surface specific humidities), and to the atmospheric and oceanic conditions (e.g. wind conditions and sea state). The analysis is based on the use of daily averaged LHF and SHF and the asso- ciated bulk variables derived from major satellite-based and atmospheric reanalysis products. Inter-comparisons of heat flux products indicate that all of them exhibit similar space and time patterns. However, they also reveal significant differences in magnitude in some specific regions such as the western ocean boundaries during the Northern Hemisphere winter season, and the high southern latitudes. The differences tend to be closely related to large differences in surface wind speed and/or specific air humidity (for LHF) and to air and sea temperature differences (for SHF). Further quality investigations are performed through comprehensive comparisons with daily-averaged LHF and SHF estimated from moorings. The resulting statistics are used to assess the error of each OHF product. Consideration of error correlation between products and observations (e.g., by their assimilation) is also given. This reveals generally high noise variance in all products and a weak signal in common with in situ observations, with some products only slightly better than others. The OHF LHF and SHF products, and their associated error characteristics, are used to compute daily OHF multiproduct-ensemble (OHF/MPE) estimates of LHF and SHF over the ice-free global ocean on a 0.25° à 0.25° grid. The accuracy of this heat multiproduct, determined from comparisons with mooring data, is greater than for any individual product. It is used as a reference for the anomaly characterization of each individual OHF product
Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network
The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (~0.004â0.005), even for strong winds over 10 m s<sup>â1</sup>. The relationships show significant scatter (correlation coefficients typically in the range 0.3â0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used
Recommended from our members
Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network
The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (~0.004â0.005), even for strong winds over 10 m sâ1. The relationships show significant scatter (correlation coefficients typically in the range 0.3â0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used
Surface warming hiatus caused by increased heat uptake across multiple ocean basins
The first decade of the twenty-first century was characterised by a hiatus in global surface warming. Using ocean model hindcasts and reanalyses we show that heat uptake between the 1990s and 2000s increased by 0.7â±â0.3Wmâ2. Approximately 30% of the increase is associated with colder sea surface temperatures in the eastern Pacific. Other basins contribute via reduced heat loss to the atmosphere, in particular the Southern and subtropical Indian Oceans (30%), and the subpolar North Atlantic (40%). A different mechanism is important at longer timescales (1960s-present) over which the Southern Annular Mode trended upwards. In this period, increased ocean heat uptake has largely arisen from reduced heat loss associated with reduced winds over the Agulhas Return Current and southward displacement of Southern Ocean westerlies
Eddy-Permitting Ocean Circulation Hindcasts of Past Decades
International audienc
A global ensemble of ocean wave climate statistics from contemporary wave reanalysis and hindcasts
There are numerous global ocean wave reanalysis and hindcast products currently being distributed and used across different scientific fields. However, there is not a consistent dataset that can sample across all existing products based on a standardized framework. Here, we present and describe the first coordinated multi-product ensemble of present-day global wave fields available to date. This dataset, produced through the Coordinated Ocean Wave Climate Project (COWCLIP) phase 2, includes general and extreme statistics of significant wave height (Hs), mean wave period (Tm) and mean wave direction (Ξm) computed across 1980â2014, at different frequency resolutions (monthly, seasonally, and annually). This coordinated global ensemble has been derived from fourteen state-of-the-science global wave products obtained from different atmospheric reanalysis forcing and downscaling methods. This data set has been processed, under a specific framework for consistency and quality, following standard Data Reference Syntax, Directory Structures and Metadata specifications. This new comprehensive dataset provides support to future broad-scale analysis of historical wave climatology and variability as well as coastal risk and vulnerability assessments across offshore and coastal engineering applications
Global ocean wave fields show consistent regional trends between 1980 and 2014 in a multi-product ensemble
Historical trends in the direction and magnitude of ocean surface wave height, period, or direction are debated due to diverse data, time-periods, or methodologies. Using a consistent community-driven ensemble of global wave products, we quantify and establish regions with robust trends in global multivariate wave fields between 1980 and 2014. We find that about 30-40% of the global ocean experienced robust seasonal trends in mean and extreme wave height, period, and direction. Most of the Southern Hemisphere exhibited strong upward-trending wave heights (1-2 cm per year) and periods during winter and summer. Ocean basins with robust positive trends are far larger than those with negative trends. Historical trends calculated over shorter periods generally agree with satellite records but vary from product to product, with some showing a consistently negative bias. Variability in trends across products and time-periods highlights the importance of considering multiple sources when seeking robust change analyses
- âŠ