95 research outputs found

    Highly efficient multilayer organic pure-blue-light emitting diodes with substituted carbazoles compounds in the emitting layer

    Get PDF
    Bright blue organic light-emitting diodes (OLEDs) based on 1,4,5,8,N-pentamethylcarbazole (PMC) and on dimer of N-ethylcarbazole (N,N'-diethyl-3,3'-bicarbazyl) (DEC) as emitting layers or as dopants in a 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl (DPVBi) matrix are described. Pure blue-light with the C.I.E. coordinates x = 0.153 y = 0.100, electroluminescence efficiency \eta_{EL} of 0.4 cd/A, external quantum efficiency \eta_{ext.} of 0.6% and luminance L of 236 cd/m2 (at 60 mA/cm2) were obtained with PMC as an emitter and the 2,9-dimethyl-4,7-diphenyl-1,10-phenantroline (BCP) as a hole-blocking material in five-layer emitting devices. The highest efficiencies \eta_{EL.} of 4.7 cd/A, and \eta_{ext} = 3.3% were obtained with a four-layer structure and a DPVBi DEC-doped active layer (CIE coordinates x = 0.158, y=0.169, \lambda_{peak} = 456 nm). The \eta_{ext.} value is one the highest reported at this wavelength for blue OLEDs and is related to an internal quantum efficiency up to 20%

    Gain properties of dye-doped polymer thin films

    Full text link
    Hybrid pumping appears as a promising compromise in order to reach the much coveted goal of an electrically pumped organic laser. In such configuration the organic material is optically pumped by an electrically pumped inorganic device on chip. This engineering solution requires therefore an optimization of the organic gain medium under optical pumping. Here, we report a detailed study of the gain features of dye-doped polymer thin films. In particular we introduce the gain efficiency KK, in order to facilitate comparison between different materials and experimental conditions. The gain efficiency was measured with various setups (pump-probe amplification, variable stripe length method, laser thresholds) in order to study several factors which modify the actual gain of a layer, namely the confinement factor, the pump polarization, the molecular anisotropy, and the re-absorption. For instance, for a 600 nm thick 5 wt\% DCM doped PMMA layer, the different experimental approaches give a consistent value K≃K\simeq 80 cm.MW−1^{-1}. On the contrary, the usual model predicting the gain from the characteristics of the material leads to an overestimation by two orders of magnitude, which raises a serious problem in the design of actual devices. In this context, we demonstrate the feasibility to infer the gain efficiency from the laser threshold of well-calibrated devices. Besides, temporal measurements at the picosecond scale were carried out to support the analysis.Comment: 15 pages, 17 figure

    Diffusion of triplet excitons in an operational Organic Light Emitting Diode

    Full text link
    Measurements of the diffusion length L for triplet excitons in small molecular-weight organic semiconductors are commonly carried out using a technique in which a phosphorescent-doped probe layer is set in the vicinity of a supposed exciton generation zone. However, analyses commonly used to retrieve LL ignore microcavity effects that may induce a strong modulation of the emitted light as the position of the exciton probe is shifted. The present paper investigates in detail how this technique may be improved to obtain more accurate results for L. The example of 4,4'-bis(carbazol-9-yl)1,1'-biphenyl (CBP) is taken, for which a triplet diffusion length of L=16 +/- 4 nm (at 3 mA/cm2) is inferred from experiments. The influence of triplet-triplet annihilation, responsible for an apparent decrease of L at high current densities, is theoretically investigated, as well as the 'invasiveness' of the thin probe layer on the exciton distribution. The interplay of microcavity effects and direct recombinations is demonstrated experimentally with the archetypal trilayer structure [N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)]-4,4'-diaminobiphenyl (NPB)/CBP/ 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (named bathocuproine, BCP). It is shown that in this device holes do cross the NPB/CBP junction, without the assistance of electrons and despite the high energetic barrier imposed by the shift between the HOMO levels. The use of the variable-thickness doped layer technique in this case is then discussed. Finally, some guidelines are given for improving the measure of the diffusion length of triplet excitons in operational OLEDs, applicable to virtually any small molecular-weight material.Comment: Accepted for publication in Physical Review

    An insight into polarization states of solid-state organic lasers

    Full text link
    The polarization states of lasers are crucial issues both for practical applications and fundamental research. In general, they depend in a combined manner on the properties of the gain material and on the structure of the electromagnetic modes. In this paper, we address this issue in the case of solid-state organic lasers, a technology which enables to vary independently gain and mode properties. Different kinds of resonators are investigated: in-plane micro-resonators with Fabry-Perot, square, pentagon, stadium, disk, and kite shapes, and external vertical resonators. The degree of polarization P is measured in each case. It is shown that although TE modes prevail generally (P>0), kite-shaped micro-laser generates negative values for P, i.e. a flip of the dominant polarization which becomes mostly TM polarized. We at last investigated two degrees of freedom that are available to tailor the polarization of organic lasers, in addition to the pump polarization and the resonator geometry: upon using resonant energy transfer (RET) or upon pumping the laser dye to an higher excited state. We then demonstrate that significantly lower P factors can be obtained.Comment: 12 pages, 12 figure

    Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells

    Get PDF
    Solution-processed inorganic and organic materials have been pursued for more than a decade as low-threshold, high-gain lasing media, motivated in large part by their tunable optoelectronic properties and ease of synthesis and processing. Although both have demonstrated stimulated emission and lasing, they have not yet approached the continuous-wave pumping regime. Two-dimensional CdSe colloidal nanosheets combine the advantage of solution synthesis with the optoelectronic properties of epitaxial two-dimensional quantum wells. Here, we show that these colloidal quantum wells possess large exciton and biexciton binding energies of 132 meV and 30 meV, respectively, giving rise to stimulated emission from biexcitons at room temperature. Under femtosecond pulsed excitation, close-packed thin films yield an ultralow stimulated emission threshold of 6 ÎŒJ cm(-2), sufficient to achieve continuous-wave pumped stimulated emission, and lasing when these layers are embedded in surface-emitting microcavities

    Enhanced generation of VUV radiation by four-wave mixing in mercury using pulsed laser vaporization

    Full text link
    The efficiency of a coherent VUV source at 125 nm, based on 2-photon resonant four-wave mixing in mercury vapor, has been enhanced by up to 2 orders of magnitude. This enhancement was obtained by locally heating a liquid Hg surface with a pulsed excimer laser, resulting in a high density vapor plume in which the nonlinear interaction occurred. Energies up to 5 μJ (1 kW peak power) have been achieved while keeping the overall Hg cell at room temperature, avoiding the use of a complex heat pipe. We have observed a strong saturation of the VUV yield when peak power densities of the fundamental beams exceed the GW/cm2 range, as well as a large intensity-dependant broadening (up to ~30 cm-1) of the two-photon resonance. The source has potential applications for high resolution interference lithography and photochemistry

    A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)

    Get PDF
    The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest
    • 

    corecore