Bright blue organic light-emitting diodes (OLEDs) based on
1,4,5,8,N-pentamethylcarbazole (PMC) and on dimer of N-ethylcarbazole
(N,N'-diethyl-3,3'-bicarbazyl) (DEC) as emitting layers or as dopants in a
4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl (DPVBi) matrix are described. Pure
blue-light with the C.I.E. coordinates x = 0.153 y = 0.100, electroluminescence
efficiency \eta_{EL} of 0.4 cd/A, external quantum efficiency \eta_{ext.} of
0.6% and luminance L of 236 cd/m2 (at 60 mA/cm2) were obtained with PMC as an
emitter and the 2,9-dimethyl-4,7-diphenyl-1,10-phenantroline (BCP) as a
hole-blocking material in five-layer emitting devices. The highest efficiencies
\eta_{EL.} of 4.7 cd/A, and \eta_{ext} = 3.3% were obtained with a four-layer
structure and a DPVBi DEC-doped active layer (CIE coordinates x = 0.158,
y=0.169, \lambda_{peak} = 456 nm). The \eta_{ext.} value is one the highest
reported at this wavelength for blue OLEDs and is related to an internal
quantum efficiency up to 20%