57 research outputs found

    Constrained Hyperbolic Divergence Cleaning for Smoothed Particle Magnetohydrodynamics

    Full text link
    We present a constrained formulation of Dedner et al's hyperbolic/parabolic divergence cleaning scheme for enforcing the \nabla\dot B = 0 constraint in Smoothed Particle Magnetohydrodynamics (SPMHD) simulations. The constraint we impose is that energy removed must either be conserved or dissipated, such that the scheme is guaranteed to decrease the overall magnetic energy. This is shown to require use of conjugate numerical operators for evaluating \nabla\dot B and \nabla{\psi} in the SPMHD cleaning equations. The resulting scheme is shown to be stable at density jumps and free boundaries, in contrast to an earlier implementation by Price & Monaghan (2005). Optimal values of the damping parameter are found to be {\sigma} = 0.2-0.3 in 2D and {\sigma} = 0.8-1.2 in 3D. With these parameters, our constrained Hamiltonian formulation is found to provide an effective means of enforcing the divergence constraint in SPMHD, typically maintaining average values of h |\nabla\dot B| / |B| to 0.1-1%, up to an order of magnitude better than artificial resistivity without the associated dissipation in the physical field. Furthermore, when applied to realistic, 3D simulations we find an improvement of up to two orders of magnitude in momentum conservation with a corresponding improvement in numerical stability at essentially zero additional computational expense.Comment: 28 pages, 25 figures, accepted to J. Comput. Phys. Movies at http://www.youtube.com/playlist?list=PL215D649FD0BDA466 v2: fixed inverted figs 1,4,6, and several color bar

    Low frequency waves in plasmas with spatially varying electron temperature

    Get PDF

    Low frequency waves in plasmas with spatially varying electron temperature

    Full text link

    Collimated jets from the first core

    Full text link
    We have performed Smoothed Particle Magnetohydrodynamics (SPMHD) simulations demonstrating the production of collimated jets during collapse of 1 solar mass molecular cloud cores to form the `first hydrostatic core' in low mass star formation. Recently a number of candidate first core objects have been observed, including L1448 IRS2E, L1451-mm and Per Bolo 58, although it is not yet clear that these are first hydrostatic cores. Recent observations of Per Bolo 58 in particular appear to show collimated, bipolar outflows which are inconsistent with previous theoretical expectations. We show that low mass first cores can indeed produce tightly collimated jets (opening angles <~ 10 degrees) with speeds of ~2-7 km/s, consistent with some of the observed candidates. We have also demonstrated, for the first time, that such phenomena can be successfully captured in SPMHD simulations.Comment: 5 pages, 4 figures, accepted to MNRAS Letters. Movies at http://users.monash.edu.au/~dprice/pubs/jet

    Excitation and relaxation in atom-cluster collisions

    Get PDF
    Electronic and vibrational degrees of freedom in atom-cluster collisions are treated simultaneously and self-consistently by combining time-dependent density functional theory with classical molecular dynamics. The gradual change of the excitation mechanisms (electronic and vibrational) as well as the related relaxation phenomena (phase transitions and fragmentation) are studied in a common framework as a function of the impact energy (eV...MeV). Cluster "transparency" characterized by practically undisturbed atom-cluster penetration is predicted to be an important reaction mechanism within a particular window of impact energies.Comment: RevTeX (4 pages, 4 figures included with epsf

    Upstream sources of the Denmark Strait Overflow : observations from a high-resolution mooring array

    Get PDF
    © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 112 (2016): 94-112, doi:10.1016/j.dsr.2016.02.007.We present the first results from a densely instrumented mooring array upstream of the Denmark Strait sill, extending from the Iceland shelfbreak to the Greenland shelf. The array was deployed from September 2011 to July 2012, and captured the vast majority of overflow water denser than 27.8 kgm-3 approaching the sill. The mean transport of overflow water over the length of the deployment was 3.54 ± 0.16 Sv. Of this, 0.58 Sv originated from below sill depth, revealing that aspiration takes place in Denmark Strait. We confirm the presence of two main sources of overflow water: one approaching the sill in the East Greenland Current and the other via the North Icelandic Jet. Using an objective technique based on the hydrographic properties of the water, the transports of these two sources are found to be 2.54 ± 0.17 Sv and 1.00 ± 0.17 Sv, respectively. We further partition the East Greenland Current source into that carried by the shelfbreak jet (1.50 ± 0.16 Sv) versus that transported by a separated branch of the current on the Iceland slope (1.04 ± 0.15 Sv). Over the course of the year the total overflow transport is more consistent than the transport in either branch; compensation takes place among the pathways that maintains a stable total overflow transport. This is especially true for the two East Greenland Current branches whose transports vary out of phase with each other on weekly and longer time scales. We argue that wind forcing plays a role in this partitioning.The mooring and analysis work was supported by NSF OCE research grants OCE-0959381 and OCE-1433958, by the European Union 7th Framework Programme (FP7 2007-2013) under grant agreement n. 308299 NACLIM, and and by the Research Council of Norway through the Fram Centre Flaggship project 6606-299.2017-03-2

    Upstream sources of the Denmark Strait Overflow : observations from a high-resolution mooring array

    Get PDF
    © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 112 (2016): 94-112, doi:10.1016/j.dsr.2016.02.007.We present the first results from a densely instrumented mooring array upstream of the Denmark Strait sill, extending from the Iceland shelfbreak to the Greenland shelf. The array was deployed from September 2011 to July 2012, and captured the vast majority of overflow water denser than 27.8 kgm-3 approaching the sill. The mean transport of overflow water over the length of the deployment was 3.54 ± 0.16 Sv. Of this, 0.58 Sv originated from below sill depth, revealing that aspiration takes place in Denmark Strait. We confirm the presence of two main sources of overflow water: one approaching the sill in the East Greenland Current and the other via the North Icelandic Jet. Using an objective technique based on the hydrographic properties of the water, the transports of these two sources are found to be 2.54 ± 0.17 Sv and 1.00 ± 0.17 Sv, respectively. We further partition the East Greenland Current source into that carried by the shelfbreak jet (1.50 ± 0.16 Sv) versus that transported by a separated branch of the current on the Iceland slope (1.04 ± 0.15 Sv). Over the course of the year the total overflow transport is more consistent than the transport in either branch; compensation takes place among the pathways that maintains a stable total overflow transport. This is especially true for the two East Greenland Current branches whose transports vary out of phase with each other on weekly and longer time scales. We argue that wind forcing plays a role in this partitioning.The mooring and analysis work was supported by NSF OCE research grants OCE-0959381 and OCE-1433958, by the European Union 7th Framework Programme (FP7 2007-2013) under grant agreement n. 308299 NACLIM, and and by the Research Council of Norway through the Fram Centre Flaggship project 6606-299.2017-03-2

    Protostellar collapse and fragmentation using an MHD GADGET

    Full text link
    Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics (SPH) method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsical difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation of the 'Boss & Bodenheimer standard isothermal test case', to study the impact of the magnetic fields on collapse and fragmentation. In our simulations, we concentrate on setups, where the initial magnetic field is parallel to the rotation axis. We examine different field strengths and compare our results to other findings reported in the literature. We are able to confirm specific results found elsewhere, namely the delayed onset of star formation for strong fields, accompanied by the tendency to form only single stars. We also find that the 'magnetic cushioning effect', where the magnetic field is wound up to form a 'cushion' between the binary, aids binary fragmentation in a case, where previously only formation of a single protostar was expected.Comment: 18 pages, 11 figures. Final version (with revisions). Accepted to MNRA

    Convergence of AMR and SPH simulations - I. Hydrodynamical resolution and convergence tests

    Get PDF
    We compare the results for a set of hydrodynamical tests performed with the adaptive mesh refinement finite volume code, MG, and the smoothed particle hydrodynamics (SPH) code, SEREN. The test suite includes shock tube tests, with and without cooling, the non-linear thin-shell instability and the Kelvin–Helmholtz instability. The main conclusions are the following. (i) The two methods converge in the limit of high resolution and accuracy in most cases. All tests show good agreement when numerical effects (e.g. discontinuities in SPH) are properly treated. (ii) Both methods can capture adiabatic shocks and well-resolved cooling shocks perfectly well with standard prescriptions. However, they both have problems when dealing with under-resolved cooling shocks, or strictly isothermal shocks, at high Mach numbers. The finite volume code only works well at first order and even then requires some additional artificial viscosity. SPH requires either a larger value of the artificial viscosity parameter, αAV, or a modified form of the standard artificial viscosity term using the harmonic mean of the density, rather than the arithmetic mean. (iii) Some SPH simulations require larger kernels to increase neighbour number and reduce particle noise in order to achieve agreement with finite volume simulations (e.g. the Kelvin–Helmholtz instability). However, this is partly due to the need to reduce noise that can corrupt the growth of small-scale perturbations (e.g. the Kelvin–Helmholtz instability). In contrast, instabilities seeded from large-scale perturbations (e.g. the non-linear thin shell instability) do not require more neighbours and hence work well with standard SPH formulations and converge with the finite volume simulations. (iv) For purely hydrodynamical problems, SPH simulations take an order of magnitude longer to run than finite volume simulations when running at equivalent resolutions, i.e. when they both resolve the underlying physics to the same degree. This requires about two to three times as many particles as the number of cells
    • 

    corecore