136 research outputs found

    Influence of ENSO on the QBO: Results from an ensemble of idealized simulations

    Get PDF
    The El Niño-Southern Oscillation (ENSO) changes convection in the tropics and therefore the excitation of equatorial waves. Equatorial waves propagate from the troposphere upward where they drive the quasi-biennial oscillation (QBO) in the stratosphere. In this work, we analyze the effect of ENSO on the QBO utilizing an atmospheric general circulation model in a comprehensive experimental setup. We construct two ensembles of different QBO initial conditions, with the onset of a westerly (QBOW) and easterly (QBOE) jet at 10-hPa. In the course of an 18-months simulation period, the two sets of initial conditions experience each El Niño (EL) and La Niña (LA) boundary conditions. Due to the increased tropospheric temperatures during EL conditions compared to LA conditions, the experiments show an increase in tropospheric wave activity which increases QBO forcing in the stratosphere in EL. The underlying easterly jet in QBOW is weaker during EL compared to LA, while the underlying westerly jet in QBOE is stronger during EL compared to LA. On one hand, the weaker underlying jet in QBOW and the increase in QBO forcing due to waves cause a faster downward propagation for the westerly jet in QBOW during EL. On the other hand, the stronger underlying jet in QBOE opposes the increased QBO forcing due to waves for QBOE during EL. Therefore, the downward propagation speed of the easterly jet in QBOE is similar during EL and LA conditions. Changes in stratospheric tropical upwelling associated with EL and LA do not affect QBO properties in the simulation. Key Points ENSO modifies wave activity in the troposphere ENSO changes QBO amplitude ENSO changes QBO downward progressio

    Spin Fluctuation-Induced Superconductivity in Organic Compounds

    Full text link
    Spin fluctuation-induced superconductivity in two-dimensional organic compounds such as \kappa-(ET)_2-X is investigated by using a simplified dimer Hubbard model with right-angled isosceles triangular lattice (transfer matrices -\tau, -\tau^\prime). The dynamical susceptiblity and the self-energy are calculated self-consistently within the fluctuation exchange approximation and the value for T_c as obtained by solving the linearized Eliashberg-type equations is in good agreement with experiment. The pairing symmetry is of d_{x^2-y^2} type. The calculated (U/\tau)-dependence of T_c compares qualitatively well with the observed pressure dependence of T_c. Varying the value for \tau^\prime/\tau from 0 to 1 we interpolate between the square lattice and the regular triangular lattice and find firstly that values of T_c for \kappa-(ET)_2-X and cuprates scale well and secondly that T_c tends to decrease with increasing \tau^\prime/\tau and no superconductivity is found for \tau^\prime/\tau=1, the regular triangular lattice.Comment: 4 pages, 6 eps figures, uses jpsj.st

    Faint AGN and the Ionizing Background

    Get PDF
    We determine the evolution of the faint, high-redshift, optical luminosity function (LF) of AGN implied by several observationally-motivated models of the ionizing background. Our results depend crucially on whether we use the total ionizing rate measured by the proximity effect technique or the lower determination from the flux decrement distribution of Ly alpha forest lines. Assuming a faint-end LF slope of 1.58 and the SDSS estimates of the bright-end slope and normalization, we find that the LF must break at M_B*=-24.2,-22.3, -20.8 at z=3,4, 5 if we adopt the lower ionization rate and assume no stellar contribution to the background. The break must occur at M_B*=-20.6,-18.7, -18.7 for the proximity effect background estimate. These values brighten by as much as ~2 mag if high-z galaxies contribute to the background with an escape fraction of ionizing photons consistent with recent estimates: f_e=0.16. By comparing to faint AGN searches, we find that the typically-quoted proximity effect estimates of the background imply an over-abundance of faint AGN (even with f_e=1). Even adopting the lower bound on proximity effect measurements, the stellar escape fraction must be high: f_e>0.2. Conversely, the lower flux- decrement-derived background requires a limited stellar contribution: f_e<0.05. Our derived LFs together with the locally-estimated black hole density suggest that the efficiency of converting mass to light in optically-unobscured AGN is somewhat lower than expected, <0.05. Comparison with similar estimates based on X-ray counts suggests that more than half of all AGN are obscured in the UV/optical. We also derive lower limits on typical AGN lifetimes and obtain >10^7 yrs for favored cases.Comment: 19 pages, 16 figures. Accepted by Astrophysical Journa

    Relaxation Effects in the Transition Temperature of Superconducting HgBa2CuO4+delta

    Full text link
    In previous studies on a number of under- and overdoped high temperature superconductors, including YBa_{2}Cu_{3}O_{7-y} and Tl_{2}Ba_{2}CuO_{6+\delta}, the transition temperature T_c has been found to change with time in a manner which depends on the sample's detailed temperature and pressure history. This relaxation behavior in T_c is believed to originate from rearrangements within the oxygen sublattice. In the present high-pressure studies on HgBa_{2}CuO_{4+\delta} to 0.8 GPa we find clear evidence for weak relaxation effects in strongly under- and overdoped samples (Tc4050KT_c\simeq 40 - 50 K) with an activation energy EA(1bar)0.80.9eVE_{A}(1 bar) \simeq 0.8 - 0.9 eV. For overdoped HgBa_{2}CuO_{4+\delta} E_{A} increases under pressure more rapidly than previously observed for YBa_{2}Cu_{3}O_{6.41}, yielding an activation volume of +11 \pm 5 cm^{3}; the dependence of T_c on pressure is markedly nonlinear, an anomalous result for high-T_c superconductors in the present pressure range, giving evidence for a change in the electronic and/or structural properties near 0.4 GPa

    Magnetic Phase Diagram and Metal-Insulator Transition of NiS2-xSex

    Full text link
    Magnetic phase diagram of NiS2-xSex has been reexamined by systematic studies of electrical resistivity, uniform magnetic susceptibility and neutron diffraction using single crystals grown by a chemical transport method. The electrical resistivity and the uniform magnetic susceptibility exhibit the same feature of temperature dependence over a wide Se concentration. A distinct first order metal-insulator (M-I) transition accompanied by a volume change was observed only in the antiferromagnetic ordered phase for 0.50<x<0.59. In this region, the M-I transition makes substantial effects to the thermal evolution of staggered moments. In the paramagnetic phase, the M-I transition becomes broad; both the electrical resistivity and the uniform magnetic susceptibility exhibit a broad maximum around the temperatures on the M-I transition-line extrapolated to the paramagnetic phase.Comment: 6 pages, 8 figures, corrected EPS fil

    Evidence for structural and electronic instabilities at intermediate temperatures in κ\kappa-(BEDT-TTF)2_{2}X for X=Cu[N(CN)2_{2}]Cl, Cu[N(CN)2_{2}]Br and Cu(NCS)2_{2}: Implications for the phase diagram of these quasi-2D organic superconductors

    Full text link
    We present high-resolution measurements of the coefficient of thermal expansion α(T)=lnl(T)/T\alpha (T)=\partial \ln l(T)/\partial T of the quasi-twodimensional (quasi-2D) salts κ\kappa-(BEDT-TTF)2_2X with X = Cu(NCS)2_2, Cu[N(CN)2_2]Br and Cu[N(CN)2_2]Cl. At intermediate temperatures (B), distinct anomalies reminiscent of second-order phase transitions have been found at T=38T^\ast = 38 K and 45 K for the superconducting X = Cu(NCS)2_2 and Cu[N(CN)2_2]Br salts, respectively. Most interestingly, we find that the signs of the uniaxial pressure coefficients of TT^\ast are strictly anticorrelated with those of TcT_c. We propose that TT^\ast marks the transition to a spin-density-wave (SDW) state forming on minor, quasi-1D parts of the Fermi surface. Our results are compatible with two competing order parameters that form on disjunct portions of the Fermi surface. At elevated temperatures (C), all compounds show α(T)\alpha (T) anomalies that can be identified with a kinetic, glass-like transition where, below a characteristic temperature TgT_g, disorder in the orientational degrees of freedom of the terminal ethylene groups becomes frozen in. We argue that the degree of disorder increases on going from the X = Cu(NCS)2_2 to Cu[N(CN)2_2]Br and the Cu[N(CN)2_2]Cl salt. Our results provide a natural explanation for the unusual time- and cooling-rate dependencies of the ground-state properties in the hydrogenated and deuterated Cu[N(CN)2_2]Br salts reported in the literature.Comment: 22 pages, 7 figure

    Glimpsing through the high redshift neutral hydrogen fog

    Full text link
    We analyze the transmitted flux in a sample of 17 QSOs spectra at 5.74<zem<6.42 to obtain tighter constraints on the volume-averaged neutral hydrogen fraction, xHI, at z~6. We study separately the narrow transmission windows (peaks) and the wide dark portions (gaps) in the observed absorption spectra. By comparing the statistics of these spectral features with Lyalpha forest simulations, we conclude that xHI evolves smoothly from 10^{-4.4} at z=5.3 to 10^{-4.2} at z=5.6, with a robust upper limit xHI<0.36 at z=6.3. The frequency and physical sizes of the peaks imply an origin in cosmic underdense regions and/or in HII regions around faint quasars or galaxies. In one case (the intervening HII region of the faint quasar RD J1148+5253 at z=5.70 along the LOS of SDSS J1148+5251 at z=6.42) the increase of the peak spectral density is explained by the first-ever detected transverse proximity effect in the HI Lyalpha forest; this indicates that at least some peaks result from a locally enhanced radiation field. We then obtain a strong lower limit on the foreground QSO lifetime of tQ>11 Myr. The observed widths of the peaks are found to be systematically larger than the simulated ones. Reasons for such discrepancy might reside either in the photoionization equilibrium assumption or in radiative transfer effects.Comment: 12 pages, 9 figures, revised to match the accepted version including a detailed analysis of the foreground QSO redshift and of the relativistic effects on the HII region shape; MNRAS in pres

    GeV Gamma-Ray Attenuation and the High-Redshift UV Background

    Get PDF
    We present new calculations of the evolving UV background out to the epoch of cosmological reionization and make predictions for the amount of GeV gamma-ray attenuation by electron-positron pair production. Our results are based on recent semi-analytic models of galaxy formation, which provide predictions of the dust-extinguished UV radiation field due to starlight, and empirical estimates of the contribution due to quasars. We account for the reprocessing of ionizing photons by the intergalactic medium. We test whether our models can reproduce estimates of the ionizing background at high redshift from flux decrement analysis and proximity effect measurements from quasar spectra, and identify a range of models that can satisfy these constraints. Pair-production against soft diffuse photons leads to a spectral cutoff feature for gamma rays observed between 10 and 100 GeV. This cutoff varies with redshift and the assumed star formation and quasar evolution models. We find only negligible amounts of absorption for gamma rays observed below 10 GeV for any emission redshift. With observations of high-redshift sources in sufficient numbers by the Fermi Gamma-ray Space Telescope and new ground-based instruments it should be possible to constrain the extragalactic background light in the UV and optical portion of the spectrum.Comment: 19 pages, 12 figures, Accepted for publication in MNRAS, this version includes minor correction

    The Great Observatories Origins Deep Survey: Constraints on the Lyman Continuum Escape Fraction Distribution of Lyman--Break Galaxies at 3.4<z<4.5

    Full text link
    We use ultra-deep ultraviolet VLT/VIMOS intermediate-band and VLT/FORS1 narrow-band imaging in the GOODS Southern field to derive limits on the distribution of the escape fraction (f_esc) of ionizing radiation for L >~ L*(z=3) Lyman Break Galaxies (LBGs) at redshift 3.4--4.5. Only one LBG, at redshift z=3.795, is detected in its Lyman continuum (LyC; S/N~5.5), the highest redshift galaxy currently known with a direct detection. Its ultraviolet morphology is quite compact (R_eff=0.8, kpc physical). Three out of seven AGN are also detected in their LyC, including one at redshift z=3.951 and z850 = 26.1. From stacked data (LBGs) we set an upper limit to the average f_esc in the range 5%--20%, depending on the how the data are selected (e.g., by magnitude and/or redshift). We undertake extensive Monte Carlo simulations that take into account intergalactic attenuation, stellar population synthesis models, dust extinction and photometric noise in order to explore the moments of the distribution of the escaping radiation. Various distributions (exponential, log-normal and Gaussian) are explored. We find that the median f_esc is lower than ~6% with an 84% percentile limit not larger than 20%. If this result remains valid for fainter LBGs down to current observational limits, then the LBG population might be not sufficient to account for the entire photoionization budget at the redshifts considered here, with the exact details dependent upon the assumed ionizing background and QSO contribution thereto. It is possible that f_esc depends on the UV luminosity of the galaxies, with fainter galaxies having higher f_esc, and estimates of f_esc from a sample of faint LBG from the HUDF (i775<28.5) are in broad quantitative agreement with such a scenario.Comment: 58 pages, 23 figures; submitted to ApJ, revised version in response to referee's comment

    Interplay of structural and electronic phase separation in single crystalline La(2)CuO(4.05) studied by neutron and Raman scattering

    Full text link
    We report a neutron and Raman scattering study of a single-crystal of La(2)CuO(4.05) prepared by high temperature electrochemical oxidation. Elastic neutron scattering measurements show the presence of two phases, corresponding to the two edges of the first miscibility gap, all the way up to 300 K. An additional oxygen redistribution, driven by electronic energies, is identified at 250 K in Raman scattering (RS) experiments by the simultaneous onset of two-phonon and two-magnon scattering, which are fingerprints of the insulating phase. Elastic neutron scattering measurements show directly an antiferromagnetic ordering below a N\'eel temperature of T_N =210K. The opening of the superconducting gap manifests itself as a redistribution of electronic Raman scattering below the superconducting transition temperature, T_c = 24K. A pronounced temperature-dependent suppression of the intensity of the (100) magnetic Bragg peak has been detected below T_c. We ascribe this phenomenon to a change of relative volume fraction of superconducting and antiferromagnetic phases with decreasing temperature caused by a form of a superconducting proximity effect.Comment: 9 pages, including 9 eps figures, submitted to PR
    corecore