77 research outputs found

    Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data

    Get PDF
    The Mw 7.7 2007 November 14 earthquake had an epicentre located close to the city of Tocopilla, at the southern end of a known seismic gap in North Chile. Through modelling of Global Positioning System (GPS) and radar interferometry (InSAR) data, we show that this event ruptured the deeper part of the seismogenic interface (30–50 km) and did not reach the surface. The earthquake initiated at the hypocentre and was arrested ~150 km south, beneath the Mejillones Peninsula, an area already identified as an important structural barrier between two segments of the Peru–Chile subduction zone. Our preferred models for the Tocopilla main shock show slip concentrated in two main asperities, consistent with previous inversions of seismological data. Slip appears to have propagated towards relatively shallow depths at its southern extremity, under the Mejillones Peninsula. Our analysis of post-seismic deformation suggests that small but still significant post-seismic slip occurred within the first 10 d after the main shock, and that it was mostly concentrated at the southern end of the rupture. The post-seismic deformation occurring in this period represents ~12–19 per cent of the coseismic deformation, of which ~30–55 per cent has been released aseismically. Post-seismic slip appears to concentrate within regions that exhibit low coseismic slip, suggesting that the afterslip distribution during the first month of the post-seismic interval complements the coseismic slip. The 2007 Tocopilla earthquake released only ~2.5 per cent of the moment deficit accumulated on the interface during the past 130 yr and may be regarded as a possible precursor of a larger subduction earthquake rupturing partially or completely the 500-km-long North Chile seismic gap

    Source of the 1693 Catania earthquake and tsunami (southern Italy): New evidence from tsunami modeling of a locked subduction fault plane,

    No full text
    The 1693 Catania earthquake, which caused 60000 deaths in eastern Sicily and generated a 5–10 m high tsunami, is investigated. GPS data indicate ESE‐WNW convergence in the Calabrian arc at 4–5 mm/yr. New high‐resolution seismic data image active compression at the toe of the accretionary wedge. The lack of instrumentally recorded thrust earthquakes suggests the presence of a locked subduction fault plane. Thermal modeling is applied to calculate the limits of the seismogenic zone. Tsunami modeling is performed to test the hypothesis that the 1693 earthquake occurred on the subduction fault plane (160 × 120 km in size) with 2 m of mean co‐seismic slip. This source successfully reproduces historical observations with regard to polarity and predicts 1–3 m high amplitudes. It is likely that only the SW segment of the subduction fault plane ruptured in 1693 and 1169, implying a recurrence interval of roughly 500 years for similar events

    Seismogenic zone structure of the southern Middle America Trench, Costa Rica

    Get PDF
    The shallow seismogenic portion of subduction zones generates damaging large and great earthquakes. This study provides structural constraints on the seismogenic zone of the Middle America Trench offshore central Costa Rica and insights into the physical and mechanical characteristics controlling seismogenesis. We have located ~300 events that occurred following the MW 6.9, 20 August 1999, Quepos, Costa Rica, underthrusting earthquake using a three-dimensional velocity model and arrival time data recorded by a temporary local network of land and ocean bottom seismometers. We use aftershock locations to define the geometry and characteristics of the seismogenic zone in this region. These events define a plane dipping at 19° that marks the interface between the Cocos Plate and the Panama Block. The majority of aftershocks occur below 10 km and above 30 km depth below sea level, corresponding to 30–35 km and 95 km from the trench axis, respectively. Relative event relocation produces a seismicity pattern similar to that obtained using absolute locations, increasing confidence in the geometry of the seismogenic zone. The aftershock locations spatially correlate with the downdip extension of the oceanic Quepos Plateau and reflect the structure of the main shock rupture asperity. This strengthens an earlier argument that the 1999 Quepos earthquake ruptured specific bathymetric highs on the downgoing plate. We believe that subduction of this highly disrupted seafloor has established a set of conditions which presently limit the seismogenic zone to be between 10 and 35 km below sea level

    Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges

    Get PDF
    The Indo-Burman mountain rangesmarkthe boundary between the Indian and Eurasian plates, north of the Sumatra–Andaman subduction zone. Whether subduction still occurs along this subaerial section of the plate boundary, with 46mm/yr of highly oblique motion, is contentious. About 21mm/yr of shear motion is taken up along the Sagaing Fault, on the eastern margin of the deformation zone. It has been suggested that the remainder of the relative motion is taken up largely or entirely by horizontal strike-slip faulting and that subduction has stopped. Here we present GPS measurements of plate motions in Bangladesh, combined with measurements from Myanmar and northeast India, taking advantage of a more than 300 km subaerial accretionary prism spanning the Indo-Burman Ranges to the Ganges–Brahmaputra Delta. They reveal 13–17mm/yr of plate convergence on an active, shallowly dipping and locked megathrust fault. Most of the strike-slip motion occurs on a few steep faults, consistent with patterns of strain partitioning in subduction zones. Our results strongly suggest that subduction in this region is active, despite the highly oblique plate motion and thick sediments. We suggest that the presence of a locked megathrust plate boundary represents an underappreciated hazard in one of the most densely populated regions of the world

    Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles

    Get PDF
    Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60–100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120–160 km depth suggests that the slab’s mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics

    Olfactory Interference during Inhibitory Backward Pairing in Honey Bees

    Get PDF
    Background: Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees) is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing), the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor) has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity. Methodology/Principal Findings: If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds) after the sucrose (backward pairing). We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning) trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/ memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference. Conclusions/Significance: Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or t

    Limits of the seismogenic zone in the epicentral region of the 26 December 2004 great Sumatra-Andaman earthquake: Results from seismic refraction and wide-angle reflection surveys and thermal modeling

    Get PDF
    The 26 December 2004 Sumatra earthquake (Mw = 9.1) initiated around 30 km depth and ruptured 1300 km of the Indo-Australian Sunda plate boundary. During the Sumatra OBS (ocean bottom seismometer) survey, a wide angle seismic profile was acquired across the epicentral region. A seismic velocity model was obtained from combined travel time tomography and forward modeling. Together with reflection seismic data from the SeaCause II cruise, the deep structure of the source region of the great earthquake is revealed. Four to five kilometers of sediments overlie the oceanic crust at the trench, and the subducting slab can be imaged down to a depth of 35 km. We find a crystalline backstop 120 km from the trench axis, below the fore arc basin. A high velocity zone at the lower landward limit of the raycovered domain, at 22 km depth, marks a shallow continental Moho, 170 km from the trench. The deep structure obtained from the seismic data was used to construct a thermal model of the fore arc in order to predict the limits of the seismogenic zone along the plate boundary fault. Assuming 100C-150C as its updip limit, the seismogenic zone is predicted to begin 530 km from the trench. The downdip limit of the 2004 rupture as inferred from aftershocks is within the 350C 450C temperature range, but this limit is 210-250 km from the trench axis and is much deeper than the fore arc Moho. The deeper part of the rupture occurred along the contact between the mantle wedge and the downgoing plate
    corecore