28 research outputs found

    Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign

    Get PDF
    Abstract: In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M ⊙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87’s spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded

    The Journal of Physiology

    No full text
    Dendritic spines are the main receptacles of excitatory information in the brain. Their particular morphology, with a small head connected to the dendrite by a slender neck, has inspired theoretical and experimental work to understand how these structural features affect the processing, storage and integration of synaptic inputs in pyramidal neurons (PNs). The activation of glutamate receptors in spines triggers a large voltage change as well as calcium signals at the spine head. Thus, voltage-gated and calcium-activated potassium channels located in the spine head likely play a key role in synaptic transmission. Here we study the presence and function of large conductance calcium-activated potassium (BK) channels in spines from layer 5 PNs. We found that BK channels are localized to dendrites and spines regardless of their size, but their activity can only be detected in spines with small head volumes (≤0.09 μm3), which reduces the amplitude of two-photon uncaging excitatory postsynaptic potentials recorded at the soma. In addition, we found that calcium signals in spines with small head volumes are significantly larger than those observed in spines with larger head volumes. In accordance with our experimental data, numerical simulations predict that synaptic inputs impinging onto spines with small head volumes generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, which are sufficient to activate spine BK channels. These results show that BK channels are selectively activated in small-headed spines, suggesting a new level of dendritic spine-mediated regulation of synaptic processing, integration and plasticity in cortical PNs. Key points BK channels are expressed in the visual cortex and layer 5 pyramidal neuron somata, dendrites and spines regardless of their size. BK channels are selectively activated in small-headed spines (≤0.09 μm3), which reduces the amplitude of two-photon (2P) uncaging excitatory postsynaptic potentials (EPSPs) recorded at the soma. Two-photon imaging revealed that intracellular calcium responses in the head of 2P-activated spines are significantly larger in small-headed spines (≤0.09 μm3) than in spines with larger head volumes. In accordance with our experimental data, numerical simulations showed that synaptic inputs impinging onto spines with small head volumes (≤0.09 μm3) generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, sufficient to activate spine BK channels and suppress EPSPs

    Molecular basis of ancestral vertebrate electroreception

    No full text
    Elasmobranch fishes, including sharks, rays, and skates, use specialized electrosensory organs called Ampullae of Lorenzini to detect extremely small changes in environmental electric fields. Electrosensory cells within these ampullae are able to discriminate and respond to minute changes in environmental voltage gradients through an as-yet unknown mechanism. Here we show that the voltage-gated calcium channel Ca(V)1.3 and big conductance calcium-activated potassium (BK) channel are preferentially expressed by electrosensory cells in little skate (Leucoraja erinacea) and functionally couple to mediate electrosensory cell membrane voltage oscillations, which are important in the detection of specific, weak electrical signals. Both channels exhibit unique properties compared with their mammalian orthologues to support electrosensory functions: structural adaptations in Ca(V)1.3 mediate a low voltage threshold for activation, while alterations in BK support specifically tuned voltage oscillations. These findings reveal a molecular basis of electroreception and demonstrate how discrete evolutionary changes in ion channel structure facilitate sensory adaptation
    corecore