1,027 research outputs found
Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current
The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy‐permitting regional ocean model, we present a suite of simulations forced by the same time‐mean fields, but with different atmospheric and remote ocean variability. These eddy‐permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies
Model simulations on the long-term dispersal of 137Cs released into the Pacific Ocean off Fukushima
A sequence of global ocean circulation models, with horizontal mesh sizes of 0.5°, 0.25° and 0.1°, are used to estimate the long-term dispersion by ocean currents and mesoscale eddies of a slowly decaying tracer (half-life of 30 years, comparable to that of 137Cs) from the local waters off the Fukushima Dai-ichi Nuclear Power Plants. The tracer was continuously injected into the coastal waters over some weeks; its subsequent spreading and dilution in the Pacific Ocean was then simulated for 10 years. The simulations do not include any data assimilation, and thus, do not account for the actual state of the local ocean currents during the release of highly contaminated water from the damaged plants in March–April 2011. An ensemble differing in initial current distributions illustrates their importance for the tracer patterns evolving during the first months, but suggests a minor relevance for the large-scale tracer distributions after 2–3 years. By then the tracer cloud has penetrated to depths of more than 400 m, spanning the western and central North Pacific between 25°N and 55°N, leading to a rapid dilution of concentrations. The rate of dilution declines in the following years, while the main tracer patch propagates eastward across the Pacific Ocean, reaching the coastal waters of North America after about 5–6 years. Tentatively assuming a value of 10 PBq for the net 137Cs input during the first weeks after the Fukushima incident, the simulation suggests a rapid dilution of peak radioactivity values to about 10 Bq m−3 during the first two years, followed by a gradual decline to 1–2 Bq m−3 over the next 4–7 years. The total peak radioactivity levels would then still be about twice the pre-Fukushima values
Precision measurement of the half-life and the decay branches of 62Ga
In an experiment performed at the Accelerator Laboratory of the University of
Jyvaskyla, the beta-decay half-life of 62Ga has been studied with high
precision using the IGISOL technique. A half-life of T1/2 = 116.09(17)ms was
measured. Using beta-gamma coincidences, the gamma intensity of the 954keV
transition and an upper limit of the beta-decay feeding of the 0+_2 state have
been extracted. The present experimental results are compared to previous
measurements and their impact on our understanding of the weak interaction is
discussed.Comment: 7 pages, 7 figures, submitted to EPJ
Marine biogeochemical responses to the North Atlantic Oscillation in a coupled climate model
In this study a coupled ocean-atmosphere model containing interactive marine biogeochemistry is used to analyze interannual, lagged, and decadal marine biogeochemical responses to the North Atlantic Oscillation (NAO), the dominant mode of North Atlantic atmospheric variability. The coupled model adequately reproduces present-day climatologies and NAO atmospheric variability. It is shown that marine biogeochemical responses to the NAO are governed by different mechanisms according to the time scale considered. On interannual time scales, local changes in vertical mixing, caused by modifications in air-sea heat, freshwater, and momentum fluxes, are most relevant in influencing phytoplankton growth through light and nutrient limitation mechanisms. At subpolar latitudes, deeper mixing occurring during positive NAO winters causes a slight decrease in late winter chlorophyll concentration due to light limitation and a 10%–20% increase in spring chlorophyll concentration due to higher nutrient availability. The lagged response of physical and biogeochemical properties to a high NAO winter shows some memory in the following 2 years. In particular, subsurface nutrient anomalies generated by local changes in mixing near the American coast are advected along the North Atlantic Current, where they are suggested to affect downstream chlorophyll concentration with 1 year lag. On decadal time scales, local and remote mechanisms act contemporaneously in shaping the decadal biogeochemical response to the NAO. The slow circulation adjustment, in response to NAO wind stress curl anomalies, causes a basin redistribution of heat, freshwater, and biogeochemical properties which, in turn, modifies the spatial structure of the subpolar chlorophyll bloom
The GOODSTEP project: General Object-Oriented Database for Software Engineering Processes
The goal of the GOODSTEP project is to enhance and improve the functionality of a fully object-oriented database management system to yield a platform suited for applications such as software development environments (SDEs). The baseline of the project is the O2 database management system (DBMS). The O2 DBMS already includes many of the features regulated by SDEs. The project has identified enhancements to O2 in order to make it a real software engineering DBMS. These enhancements are essentially upgrades of the existing O2 functionality, and hence require relatively easy extensions to the O2 system. They have been developed in the early stages of the project and are now exploited and validated by a number of software engineering tools built on top of the enhanced O2 DBMS. To ease tool construction, the GOODSTEP platform encompasses tool generation capabilities which allow for generation of integrated graphical and textual tools from high-level specifications. In addition, the GOODSTEP platform provides a software process toolset which enables modeling, analysis and enaction of software processes and is also built on top of the extended O2 database. The GOODSTEP platform is to be validated using two CASE studies carried out to develop an airline application and a business application
A narrow, edge-on disk resolved around HD 106906 with SPHERE
HD~106906AB is so far the only young binary system around which a planet has
been imaged and a debris disk evidenced thanks to a strong IR excess. As such,
it represents a unique opportunity to study the dynamics of young planetary
systems. We aim at further investigating the close (tens of au scales)
environment of the HD~106906AB system. We used the extreme AO fed, high
contrast imager SPHERE recently installed on the VLT to observe HD~106906. Both
the IRDIS imager and the Integral Field Spectrometer were used. We discovered a
very inclined, ring-like disk at a distance of 65~au from the star. The disk
shows a strong brightness asymmetry with respect to its semi-major axis. It
shows a smooth outer edge, compatible with ejection of small grains by the
stellar radiation pressure. We show furthermore that the planet's projected
position is significantly above the disk's PA. Given the determined disk
inclination, it is not excluded though that the planet could still orbit within
the disk plane if at a large separation (2000--3000 au). We identified several
additional point sources in the SPHERE/IRDIS field-of-view, that appear to be
background objects. We compare this system with other debris disks sharing
similarities, and we briefly discuss the present results in the framework of
dynamical evolution.Comment: 7 pages, 6 figures, accepted by Astronomy & Astrophysic
First light of the VLT planet finder SPHERE. II. The physical properties and the architecture of the young systems PZ Tel and HD 1160 revisited
[Abridged] Context. The young systems PZ Tel and HD 1160, hosting known
low-mass companions, were observed during the commissioning of the new planet
finder SPHERE with several imaging and spectroscopic modes. Aims. We aim to
refine the physical properties and architecture of both systems. Methods. We
use SPHERE commissioning data and REM observations, as well as literature and
unpublished data from VLT/SINFONI, VLT/NaCo, Gemini/NICI, and Keck/NIRC2.
Results. We derive new photometry and confirm the nearly daily photometric
variability of PZ Tel A. Using literature data spanning 38 yr, we show that the
star also exhibits a long-term variability trend. The 0.63-3.8 mic SED of PZ
Tel B allows us to revise its properties: spectral type M7+/-1, Teff=2700+/-100
K, log(g)<4.5 dex, log(L/L_Sun)=-2.51+/-0.10 dex, and mass 38-72 MJ. The 1-3.8
mic SED of HD 1160 B suggests a massive brown dwarf or a low-mass star with
spectral type M5.5-7.0, Teff=3000+/-100 K, [M/H]=-0.5-0.0 dex,
log(L/L_Sun)=-2.81+/-0.10 dex, and mass 39-168 MJ. We confirm the deceleration
and high eccentricity (e>0.66) of PZ Tel B. For e<0.9, the inclination,
longitude of the ascending node, and time of periastron passage are well
constrained. The system is seen close to an edge-on geometry. We reject other
brown dwarf candidates outside 0.25" for both systems, and massive giant
planets (>4 MJ) outside 0.5" for the PZ Tel system. We also show that K1-K2
color can be used with YJH low-resolution spectra to identify young L-type
companions, provided high photometric accuracy (<0.05 mag) is achieved.
Conclusions. SPHERE opens new horizons in the study of young brown dwarfs and
giant exoplanets thanks to high-contrast imaging capabilities at optical and
near-infrared wavelengths, as well as high signal-to-noise spectroscopy in the
near-infrared from low (R~30-50) to medium resolutions (R~350).Comment: 25 pages, 23 figures, accepted for publication in A&A on Oct. 13th,
2015; version including language editing. Typo on co-author name on astroph
page corrected, manuscript unchange
A reduced-order strategy for 4D-Var data assimilation
This paper presents a reduced-order approach for four-dimensional variational
data assimilation, based on a prior EO F analysis of a model trajectory. This
method implies two main advantages: a natural model-based definition of a mul
tivariate background error covariance matrix , and an important
decrease of the computational burden o f the method, due to the drastic
reduction of the dimension of the control space. % An illustration of the
feasibility and the effectiveness of this method is given in the academic
framework of twin experiments for a model of the equatorial Pacific ocean. It
is shown that the multivariate aspect of brings additional
information which substantially improves the identification procedure. Moreover
the computational cost can be decreased by one order of magnitude with regard
to the full-space 4D-Var method
Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea
Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies
- …
