Abstract

This paper presents a reduced-order approach for four-dimensional variational data assimilation, based on a prior EO F analysis of a model trajectory. This method implies two main advantages: a natural model-based definition of a mul tivariate background error covariance matrix Br\textbf{B}_r, and an important decrease of the computational burden o f the method, due to the drastic reduction of the dimension of the control space. % An illustration of the feasibility and the effectiveness of this method is given in the academic framework of twin experiments for a model of the equatorial Pacific ocean. It is shown that the multivariate aspect of Br\textbf{B}_r brings additional information which substantially improves the identification procedure. Moreover the computational cost can be decreased by one order of magnitude with regard to the full-space 4D-Var method

    Similar works