4,353 research outputs found
Associated Charm Production in Neutrino-Nucleus Interactions
In this paper a search for associated charm production both in neutral and
charged current -nucleus interactions is presented. The improvement of
automatic scanning systems in the {CHORUS} experiment allows an efficient
search to be performed in emulsion for short-lived particles. Hence a search
for rare processes, like the associated charm production, becomes possible
through the observation of the double charm-decay topology with a very low
background. About 130,000 interactions located in the emulsion target
have been analysed. Three events with two charm decays have been observed in
the neutral-current sample with an estimated background of 0.180.05. The
relative rate of the associated charm cross-section in deep inelastic
interactions, has been
measured. One event with two charm decays has been observed in charged-current
interactions with an estimated background of 0.180.06 and the
upper limit on associated charm production in charged-current interactions at
90% C.L. has been found to be .Comment: 10 pages, 4 figure
Leading order analysis of neutrino induced dimuon events in the CHORUS experiment
We present a leading order QCD analysis of a sample of neutrino induced
charged-current events with two muons in the final state originating in the
lead-scintillating fibre calorimeter of the CHORUS detector. The results are
based on a sample of 8910 neutrino and 430 antineutrino induced opposite-sign
dimuon events collected during the exposure of the detector to the CERN Wide
Band Neutrino Beam between 1995 and 1998. % with GeV
and GeV collected %between 1995 and 1998. The analysis yields a
value of the charm quark mass of \mc = (1.26\pm 0.16 \pm 0.09) \GeVcc and a
value of the ratio of the strange to non-strange sea in the nucleon of , improving the results obtained in similar analyses
by previous experiments.Comment: Submitted to Nuclear Physics
Scanning-probe spectroscopy of semiconductor donor molecules
Semiconductor devices continue to press into the nanoscale regime, and new
applications have emerged for which the quantum properties of dopant atoms act
as the functional part of the device, underscoring the necessity to probe the
quantum structure of small numbers of dopant atoms in semiconductors[1-3].
Although dopant properties are well-understood with respect to bulk
semiconductors, new questions arise in nanosystems. For example, the quantum
energy levels of dopants will be affected by the proximity of nanometer-scale
electrodes. Moreover, because shallow donors and acceptors are analogous to
hydrogen atoms, experiments on small numbers of dopants have the potential to
be a testing ground for fundamental questions of atomic and molecular physics,
such as the maximum negative ionization of a molecule with a given number of
positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants
has been observed in transport studies[6,7]. In addition, Geim and coworkers
identified resonances due to two closely spaced donors, effectively forming
donor molecules[8]. Here we present capacitance spectroscopy measurements of
silicon donors in a gallium-arsenide heterostructure using a scanning probe
technique[9,10]. In contrast to the work of Geim et al., our data show
discernible peaks attributed to successive electrons entering the molecules.
Hence this work represents the first addition spectrum measurement of dopant
molecules. More generally, to the best of our knowledge, this study is the
first example of single-electron capacitance spectroscopy performed directly
with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages,
3 figures, 5 supplementary figure
Comparison of large-angle production of charged pions with incident protons on cylindrical long and short targets
The HARP collaboration has presented measurements of the double-differential
pi+/pi- production cross-section in the range of momentum 100 MeV/c <= p 800
MeV/c and angle 0.35 rad <= theta <= 2.15 rad with proton beams hitting thin
nuclear targets. In many applications the extrapolation to long targets is
necessary. In this paper the analysis of data taken with long (one interaction
length) solid cylindrical targets made of carbon, tantalum and lead is
presented. The data were taken with the large acceptance HARP detector in the
T9 beam line of the CERN PS. The secondary pions were produced by beams of
protons with momenta 5 GeV/c, 8 GeV/c and 12 GeV/c. The tracking and
identification of the produced particles were performed using a small-radius
cylindrical time projection chamber (TPC) placed inside a solenoidal magnet.
Incident protons were identified by an elaborate system of beam detectors.
Results are obtained for the double-differential yields per target nucleon d2
sigma / dp dtheta. The measurements are compared with predictions of the MARS
and GEANT4 Monte Carlo simulations.Comment: 43 pages, 20 figure
Physics with charm particles produced in neutrino interactions. A historical recollection
Results obtained in neutrino unteractions on charm particles are presented
Absolute Momentum Calibration of the HARP TPC
In the HARP experiment the large-angle spectrometer is using a cylindrical
TPC as main tracking and particle identification detector. The momentum scale
of reconstructed tracks in the TPC is the most important systematic error for
the majority of kinematic bins used for the HARP measurements of the
double-differential production cross-section of charged pions in proton
interactions on nuclear targets at large angle. The HARP TPC operated with a
number of hardware shortfalls and operational mistakes. Thus it was important
to control and characterize its momentum calibration. While it was not possible
to enter a direct particle beam into the sensitive volume of the TPC to
calibrate the detector, a set of physical processes and detector properties
were exploited to achieve a precise calibration of the apparatus. In the
following we recall the main issues concerning the momentum measurement in the
HARP TPC, and describe the cross-checks made to validate the momentum scale. As
a conclusion, this analysis demonstrates that the measurement of momentum is
correct within the published precision of 3%.Comment: To be published by JINS
Forward production of charged pions with incident on nuclear targets measured at the CERN PS
Measurements of the double-differential production cross-section
in the range of momentum 0.5 \GeVc \leq p \le 8.0 \GeVc and angle 0.025 \rad
\leq \theta \le 0.25 \rad in interactions of charged pions on beryllium,
carbon, aluminium, copper, tin, tantalum and lead are presented. These data
represent the first experimental campaign to systematically measure forward
pion hadroproduction. The data were taken with the large acceptance HARP
detector in the T9 beam line of the CERN PS. Incident particles, impinging on a
5% nuclear interaction length target, were identified by an elaborate system of
beam detectors. The tracking and identification of the produced particles was
performed using the forward spectrometer of the HARP detector. Results are
obtained for the double-differential cross-sections mainly at four incident pion beam
momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). The measurements are compared
with the GEANT4 and MARS Monte Carlo simulationComment: to be published on Nuclear Physics
Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets
A measurement of the double-differential production cross-section
in proton--carbon, proton--copper and proton--tin collisions in the range of
pion momentum 100 \MeVc \leq p < 800 \MeVc and angle 0.35 \rad \le \theta
<2.15 \rad is presented. The data were taken with the HARP detector in the T9
beam line of the CERN PS. The pions were produced by proton beams in a momentum
range from 3 \GeVc to 12 \GeVc hitting a target with a thickness of 5% of a
nuclear interaction length. The tracking and identification of the produced
particles was done using a small-radius cylindrical time projection chamber
(TPC) placed in a solenoidal magnet. An elaborate system of detectors in the
beam line ensured the identification of the incident particles. Results are
shown for the double-differential cross-sections at four incident proton beam
momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc)
Measurement of the production of charged pions by protons on a tantalum target
A measurement of the double-differential cross-section for the production of
charged pions in proton--tantalum collisions emitted at large angles from the
incoming beam direction is presented. The data were taken in 2002 with the HARP
detector in the T9 beam line of the CERN PS. The pions were produced by proton
beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a tantalum target
with a thickness of 5% of a nuclear interaction length. The angular and
momentum range covered by the experiment (100 \MeVc \le p < 800 \MeVc and
0.35 \rad \le \theta <2.15 \rad) is of particular importance for the design
of a neutrino factory. The produced particles were detected using a
small-radius cylindrical time projection chamber (TPC) placed in a solenoidal
magnet. Track recognition, momentum determination and particle identification
were all performed based on the measurements made with the TPC. An elaborate
system of detectors in the beam line ensured the identification of the incident
particles. Results are shown for the double-differential cross-sections
at four incident
proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). In addition, the
pion yields within the acceptance of typical neutrino factory designs are shown
as a function of beam momentum. The measurement of these yields within a single
experiment eliminates most systematic errors in the comparison between rates at
different beam momenta and between positive and negative pion production.Comment: 49 pages, 31 figures. Version accepted for publication on Eur. Phys.
J.
- …