7,384 research outputs found

    Radiative feedback and cosmic molecular gas: the role of different radiative sources

    Get PDF
    We present results from multifrequency radiative hydrodynamical chemistry simulations addressing primordial star formation and related stellar feedback from various populations of stars, stellar energy distributions (SEDs) and initial mass functions. Spectra for massive stars, intermediate-mass stars and regular solar-like stars are adopted over a grid of 150 frequency bins and consistently coupled with hydrodynamics, heavy-element pollution and non-equilibrium species calculations. Powerful massive population III stars are found to be able to largely ionize H and, subsequently, He and He+^+, causing an inversion of the equation of state and a boost of the Jeans masses in the early intergalactic medium. Radiative effects on star formation rates are between a factor of a few and 1 dex, depending on the SED. Radiative processes are responsible for gas heating and photoevaporation, although emission from soft SEDs has minor impacts. These findings have implications for cosmic gas preheating, primordial direct-collapse black holes, the build-up of "cosmic fossils" such as low-mass dwarf galaxies, the role of AGNi during reionization, the early formation of extended disks and angular-momentum catastrophe.Comment: 19 pages on MNRA

    On the formation and physical properties of the Intra-Cluster Light in hierarchical galaxy formation models

    Full text link
    We study the formation of the Intra-Cluster Light (ICL) using a semi-analytic model of galaxy formation, coupled to merger trees extracted from N-body simulations of groups and clusters. We assume that the ICL forms by (1) stellar stripping of satellite galaxies and (2) relaxation processes that take place during galaxy mergers. The fraction of ICL in groups and clusters predicted by our models ranges between 10 and 40 per cent, with a large halo-to-halo scatter and no halo mass dependence. We note, however, that our predicted ICL fractions depend on the resolution: for a set of simulations with particle mass one order of magnitude larger than that adopted in the high resolution runs used in our study, we find that the predicted ICL fractions are ~30-40 per cent larger than those found in the high resolution runs. On cluster scale, large part of the scatter is due to a range of dynamical histories, while on smaller scale it is driven by individual accretion events and stripping of very massive satellites, M∗≳1010.5M⊙M_{*} \gtrsim 10^{10.5} M_{\odot}, that we find to be the major contributors to the ICL. The ICL in our models forms very late (below z∼1z\sim 1), and a fraction varying between 5 and 25 per cent of it has been accreted during the hierarchical growth of haloes. In agreement with recent observational measurements, we find the ICL to be made of stars covering a relatively large range of metallicity, with the bulk of them being sub-solar.Comment: Accepted for Publication in MNRAS, 19 pages, 13 figures, 1 tabl

    Simulating the formation of a proto-cluster at z~2

    Full text link
    We present results from two high-resolution hydrodynamical simulations of proto-cluster regions at z~2.1. The simulations have been compared to observational results for the socalled Spiderweb galaxy system, the core of a putative proto-cluster region at z = 2.16, found around a radio galaxy. The simulated regions have been chosen so as to form a poor cluster with M200~10^14 h-1 Msun (C1) and a rich cluster with M200~2x10^15 h-1 Msun (C2) at z = 0. The simulated proto-clusters show evidence of ongoing assembly of a dominating central galaxy. The stellar mass of the brightest cluster galaxy (BCG) of the C2 system is in excess with respect to observational estimates for the Spiderweb galaxy, with a total star formation rate which is also larger than indicated by observations. We find that the projected velocities of galaxies in the C2 cluster are consistent with observations, while those measured for the poorer cluster C1 are too low compared to the observed velocities. We argue that the Spiderweb complex resemble the high-redshift progenitor of a rich galaxy cluster. Our results indicate that the included supernovae feedback is not enough to suppress star formation in these systems, supporting the need of introducing AGN feedback. According to our simulations, a diffuse atmosphere of hot gas in hydrostatic equilibrium should already be present at this redshift, and enriched at a level comparable to that of nearby galaxy clusters. The presence of this gas should be detectable with future deep X-ray observations.Comment: 6 pages, 4 figures, accepted for publication in MNRAS (Letters

    Statistics of Substructures in Dark Matter Haloes

    Full text link
    We study the amount and distribution of dark matter substructures within dark matter haloes, using a large set of high-resolution simulations ranging from group size to cluster size haloes, and carried our within a cosmological model consistent with WMAP 7-year data. In particular, we study how the measured properties of subhaloes vary as a function of the parent halo mass, the physical properties of the parent halo, and redshift. The fraction of halo mass in substructures increases with increasing mass. There is, however, a very large halo-to-halo scatter that can be explained only in part by a range of halo physical properties, e.g. concentration. At given halo mass, less concentrated haloes contain significantly larger fractions of mass in substructures because of the reduced strength of tidal disruption. Most of the substructure mass is located at the outskirts of the parent haloes, in relatively few massive subhaloes. This mass segregation appears to become stronger at increasing redshift, and should reflect into a more significant mass segregation of the galaxy population at different cosmic epochs. When haloes are accreted onto larger structures, their mass is significantly reduced by tidal stripping. Haloes that are more massive at the time of accretion (these should host more luminous galaxies) are brought closer to the centre on shorter time-scales by dynamical friction, and therefore suffer of a more significant stripping. The halo merger rate depends strongly on the environment with substructure in more massive haloes suffering more important mergers than their counterparts residing in less massive systems. This should translate into a different morphological mix for haloes of different mass.Comment: 13 pages, 11 figures and 1 table. MNRAS 2011 in pres

    Recovery trends of commercial fish: the case of an underperforming Mediterranean marine protected area

    Get PDF
    Temporal trends in the recovery of exploited species in marine protected areas (MPAs) are useful for a proper assessment of the efficacy of protection measures. The effects of protection on the fish assemblages of the sublittoral rocky reefs in the \u201cPenisola del Sinis-Isola di Mal di Ventre\u201d MPA (W. Sardinia, Italy) were evaluated using a multi-year series of data. Four surveys, conducted 7, 10, 13 and 15 years after the area was designated as an MPA and carried out in the period spanning June and July, were used to estimate the abundance and biomass of commercial species. The surveys were carried out in zones with decreasing levels of fishing restrictions within the MPA (zones A, B, C) and in unprotected zones (OUT1 and OUT2), and underwater video visual census techniques were used. Protected zones only occasionally showed higher levels of abundance or biomass, and the trajectories of those metrics were not consistent across the years. In addition, the zone with the highest level of protection (zone A) never presented levels of abundance and biomass higher than those in zones B and C. This study shows that even 15 years after designation, protection has had no appreciable effect in the MPA studied. It is argued that this is emblematic of several shortcomings in the planning, regulation and enforcement frameworks of the MPA

    Gas cooling in semi-analytic models and SPH simulations: are results consistent?

    Full text link
    We present a detailed comparison between the galaxy populations within a massive cluster, as predicted by hydrodynamical SPH simulations and by a semi-analytic model (SAM) of galaxy formation. Both models include gas cooling and a simple prescription of star formation, which consists in transforming instantaneously any cold gas available into stars, while neglecting any source of energy feedback. We find that, in general, galaxy populations from SAMs and SPH have similar statistical properties, in agreement with previous studies. However, when comparing galaxies on an object-by-object basis, we find a number of interesting differences: a) the star formation histories of the brightest cluster galaxies (BCGs) from SAM and SPH models differ significantly, with the SPH BCG exhibiting a lower level of star formation activity at low redshift, and a more intense and shorter initial burst of star formation with respect to its SAM counterpart; b) while all stars associated with the BCG were formed in its progenitors in the semi-analytic model used here, this holds true only for half of the final BCG stellar mass in the SPH simulation, the remaining half being contributed by tidal stripping of stars from the diffuse stellar component associated with galaxies accreted on the cluster halo; c) SPH satellites can loose up to 90 per cent of their stellar mass at the time of accretion, due to tidal stripping, a process not included in the semi-analytic model used in this study; d) in the SPH simulation, significant cooling occurs on the most massive satellite galaxies and this lasts for up to 1 Gyr after accretion. This physical process is not included in the semi-analytic model used in our study, as well as in most of the models discussed in the recent literature.Comment: Revised version submitted to MNRAS, 15 pages, 9 figures. A High-resolution version of the paper and figures can be found at this http://adlibitum.oats.inaf.it/saro/SAM2/paper.pd

    Comparison of the VIMOS-VLT Deep Survey with the Munich semi-analytical model. II. The colour-density relation up to z=1.5

    Get PDF
    [Abridged] We perform on galaxy mock catalogues the same colour-density analysis made by Cucciati et al. (2006) on a 5 Mpc/h scale using the VVDS-Deep survey, and compare the results from mocks with observed data. We use mocks with the same flux limits (I=24) as the VVDS (CMOCKS), built using the semi- analytic model by De Lucia & Blaizot (2007) applied to the Millennium Simulation. From CMOCKS, we extracted samples of galaxies mimicking the VVDS observational strategy (OMOCKS). We computed the B-band Luminosity Function LF and the colour-density relation (CDR) in the mocks. We find that the LF in mocks roughly agrees with the observed LF, but at z<0.8 the faint-end slope of the model LF is steeper than the VVDS one. Computing the LF for early and late type galaxies, we show that mocks have an excess of faint early-type and of bright late-type galaxies with respect to data. We find that the CDR in OMOCKS is in excellent agreement with the one in CMOCKS. At z~0.7, the CDR in mocks agrees with the VVDS one (red galaxies reside mainly in high densities). Yet, the strength of the CDR in mocks does not vary within 0.2<z<1.5, while the observed relation flattens with increasing z and possibly inverts at z=1.3. We argue that the lack of evolution in the CDR in mocks is not due only to inaccurate prescriptions for satellite galaxies, but that also the treatment of central galaxies has to be revised. The reversal of the CDR can be explained by wet mergers between young galaxies, producing a starburst event. This should be seen on group scales. A residual of this is found in observations at z=1.5 on larger scales, but not in the mocks, suggesting that the treatment of physical processes affecting satellites and central galaxies in models should be revised.Comment: 15 pages, 12 figures, accepted for publication in A&

    On the dependence of galaxy morphologies on galaxy mergers

    Get PDF
    The distribution of galaxy morphological types is a key test for models of galaxy formation and evolution, providing strong constraints on the relative contribution of different physical processes responsible for the growth of the spheroidal components. In this paper, we make use of a suite of semi-analytic models to study the efficiency of galaxy mergers in disrupting galaxy discs and building galaxy bulges. In particular, we compare standard prescriptions usually adopted in semi-analytic models, with new prescriptions proposed by Kannan et al., based on results from high-resolution hydrodynamical simulations, and we show that these new implementations reduce the efficiency of bulge formation through mergers. In addition, we compare our model results with a variety of observational measurements of the fraction of spheroid-dominated galaxies as a function of stellar and halo mass, showing that the present uncertainties in the data represent an important limitation to our understanding of spheroid formation. Our results indicate that the main tension between theoretical models and observations does not stem from the survival of purely disc structures (i.e. bulgeless galaxies), rather from the distribution of galaxies of different morphological types, as a function of their stellar mass.Comment: MNRAS in press, 11 pages, 5 figure

    Numerical simulations challenged on the prediction of massive subhalo abundance in galaxy clusters: the case of Abell 2142

    Get PDF
    In this Letter we compare the abundance of member galaxies of a rich, nearby (z=0.09z=0.09) galaxy cluster, Abell 2142, with that of halos of comparable virial mass extracted from sets of state-of-the-art numerical simulations, both collisionless at different resolutions and with the inclusion of baryonic physics in the form of cooling, star formation, and feedback by active galactic nuclei. We also use two semi-analytical models to account for the presence of orphan galaxies. The photometric and spectroscopic information, taken from the Sloan Digital Sky Survey Data Release 12 (SDSS DR12) database, allows us to estimate the stellar velocity dispersion of member galaxies of Abell 2142. This quantity is used as proxy for the total mass of secure cluster members and is properly compared with that of subhalos in simulations. We find that simulated halos have a statistically significant (≳7\gtrsim 7 sigma confidence level) smaller amount of massive (circular velocity above 200 km s−1200\,{\rm km\, s^{-1}}) subhalos, even before accounting for the possible incompleteness of observations. These results corroborate the findings from a recent strong lensing study of the Hubble Frontier Fields galaxy cluster MACS J0416 \citep{grillo2015} and suggest that the observed difference is already present at the level of dark matter (DM) subhalos and is not solved by introducing baryonic physics. A deeper understanding of this discrepancy between observations and simulations will provide valuable insights into the impact of the physical properties of DM particles and the effect of baryons on the formation and evolution of cosmological structures.Comment: 8 pages, 2 figures. Modified to match the version published in ApJ
    • …
    corecore