40 research outputs found

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presented. ISSN:0029-5515 ISSN:1741-432

    Is diet partly responsible for differences in COVID-19 death rates between and within countries?

    Get PDF
    Correction: Volume: 10 Issue: 1 Article Number: 44 DOI: 10.1186/s13601-020-00351-w Published: OCT 26 2020Reported COVID-19 deaths in Germany are relatively low as compared to many European countries. Among the several explanations proposed, an early and large testing of the population was put forward. Most current debates on COVID-19 focus on the differences among countries, but little attention has been given to regional differences and diet. The low-death rate European countries (e.g. Austria, Baltic States, Czech Republic, Finland, Norway, Poland, Slovakia) have used different quarantine and/or confinement times and methods and none have performed as many early tests as Germany. Among other factors that may be significant are the dietary habits. It seems that some foods largely used in these countries may reduce angiotensin-converting enzyme activity or are anti-oxidants. Among the many possible areas of research, it might be important to understand diet and angiotensin-converting enzyme-2 (ACE2) levels in populations with different COVID-19 death rates since dietary interventions may be of great benefit.Peer reviewe

    Erratum to: Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5)

    Get PDF

    Effects of Valproate Monotherapy on the Oxidant-Antioxidant Status in Mexican Epileptic Children: A Longitudinal Study

    No full text
    Epilepsy is a neurological disorder that can produce brain injury and neuronal death. Several factors such as oxidative stress have been implicated in epileptogenesis. Valproic acid (VPA) is a widely used drug for the treatment of epilepsy, but the mechanisms underlying these benefits are complex and still not fully understood. The objective of this study was to evaluate, for the first time, the effects of VPA on the oxidant-antioxidant status in Mexican epileptic children before and after 6 or 12 months of treatment with VPA by determining the activities of several plasmatic antioxidant enzymes (glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT)) and oxidant marker (malondialdehyde (MDA), hydrogen peroxide (H2O2), 8-hydroxy-2-deoxyguanosine (8-OHdG), and 3-nitrotyrosine (3-NT) levels) profiles. The possible relationships between these markers and some clinicopathological factors were also evaluated. Plasma samples were obtained from the peripheral blood of 16 healthy children and 32 patients diagnosed with epilepsy, and antioxidant/oxidant markers were measured spectrometrically. Significant decreases in all antioxidant enzyme activities, with the exception of GPx, and increases in all oxidant markers in epileptic subjects versus healthy children were observed. Interestingly, all these effects reverted after VPA monotherapy, although the results were different depending on the treatment period (6 or 12 months). These changes were contingent upon brain imaging findings, type of epilepsy, etiology of epilepsy, and the efficacy of 6 months of VPA monotherapy. Significant and positive correlations of GPx and SOD activities and H2O2 and 8-OHdG levels with the age of children at the beginning of treatment were observed. H2O2 levels were also positively correlated with number of seizures before VPA monotherapy. VPA showed significant antioxidant effects decreasing seizure activity, possibly depending on the presence of cerebral structural alterations, treatment time, and age

    Molecular Analysis of Streptomycin Resistance Genes in Clinical Strains of Mycobacterium tuberculosis and Biocomputational Analysis of the MtGidB L101F Variant

    No full text
    Globally, tuberculosis (TB) remains a prevalent threat to public health. In 2019, TB affected 10 million people and caused 1.4 million deaths. The major challenge for controlling this infectious disease is the emergence and spread of drug-resistant Mycobacterium tuberculosis, the causative agent of TB. The antibiotic streptomycin is not a current first-line anti-TB drug. However, WHO recommends its use in patients infected with a streptomycin-sensitive strain. Several mutations in the M. tuberculosisrpsL, rrs and gidB genes have proved association with streptomycin resistance. In this study, we performed a molecular analysis of these genes in clinical isolates to determine the prevalence of known or novel mutations. Here, we describe the genetic analysis outcome. Furthermore, a biocomputational analysis of the MtGidB L101F variant, the product of a novel mutation detected in gidB during molecular analysis, is also reported as a theoretical approach to study the apparent genotype-phenotype association

    Transport mechanisms in silicon heterojunction solar cells with molybdenum oxide as a hole transport layer

    No full text
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Heterojunction solar cells based on molybdenum sub-oxide (MoOx) deposited on n-type crystalline silicon have been fabricated. The hole selective character of MoOx is explained by its high workfunction, which causes a strong band bending in the Si substrate. This bending pushes the surface into inversion. In addition, the sub-stoichiometry of the evaporated MoOx layers leads to a high density of states within the bandgap. This is crucial for charge transport. The J-V electrical characteristics at several temperatures were analysed to elucidate the dominant charge transport mechanisms of this heterojunction structure. We have identified two different transport mechanisms. At low bias voltage, transport is dominated by hole tunnelling through the MoOx gap states. At higher voltage the behaviour is similar to a Schottky junction with a high barrier value, due to the high MoOx work function. These results provide a better understanding of the hole selective character of MoOx/n-type silicon heterocontacts, which is key to further improve this new kind of solar cells.Peer Reviewe
    corecore