203 research outputs found
QUEST Hierarchy for Hyperspectral Face Recognition
Face recognition is an attractive biometric due to the ease in which photographs of the human face can be acquired and processed. The non-intrusive ability of many surveillance systems permits face recognition applications to be used in a myriad of environments. Despite decades of impressive research in this area, face recognition still struggles with variations in illumination, pose and expression not to mention the larger challenge of willful circumvention. The integration of supporting contextual information in a fusion hierarchy known as QUalia Exploitation of Sensor Technology (QUEST) is a novel approach for hyperspectral face recognition that results in performance advantages and a robustness not seen in leading face recognition methodologies. This research demonstrates a method for the exploitation of hyperspectral imagery and the intelligent processing of contextual layers of spatial, spectral, and temporal information. This approach illustrates the benefit of integrating spatial and spectral domains of imagery for the automatic extraction and integration of novel soft features (biometric). The establishment of the QUEST methodology for face recognition results in an engineering advantage in both performance and efficiency compared to leading and classical face recognition techniques. An interactive environment for the testing and expansion of this recognition framework is also provided
Programming in HAL/S
Intended as an introduction to programming in HAL/S, this manual is organized as a tutorial aid which may be used as part of a self-study program or in conjunction with a course of twenty to forty classroom hours over a period of one to two weeks. A number of corrections to the first edition are incorporated into the text along with a chapter on FIXED data and an additional appendix on FORMAT I/0
Planning for Project ECHO in New Hampshire
Assuring a healthy New Hampshire requires making sure that all of the state’s residents can get the right care in the right place at the right time. Yet, access to timely, effective health care is not always a given in our state, especially for vulnerable populations. Health and community care workforce shortages, long distances to care, and social, economic, and cultural barriers make accessing care challenging for many.
The Project ECHO Model™ is an evidence-based method using web-based teleconferencing to link specialist teams with community-based sites to help community providers improve their ability to manage complex conditions. It has been proven to improve health care outcomes for vulnerable populations with limited access to care because of socioeconomic factors or geography.
The New Hampshire Project ECHO® (Extension for Community Healthcare Outcomes) Planning for Implementation and Business Sustainability Project (Planning for Project ECHO in NH) undertook a planning process to inform how to best to develop Project ECHO at UNH to serve New Hampshire health and community care providers and ultimately improve access to effective, timely care. Planning for Project ECHO in NH also developed a business and sustainability plan for long-term success of the UNH Project ECHO Hub and an evaluation plan for measuring efficacy.
Planning for Project ECHO in NH included: A Project ECHO Needs Assessment and Prioritization Process, including review of existing needs assessments in the field; a stakeholder survey of health and community care providers conducted by the New Hampshire Citizens Health Initiative (Initiative); and analysis of data from the NH Comprehensive Health Information System (NH CHIS), NH’s all-payer claims database (APCD). A business and sustainability plan including Key Informant Interviews, an environmental scan, and a template for business sustainability planning to identify funding sources and structures to sustain Project ECHO in NH. A framework for Project ECHO evaluation
Feeding Behaviour, Swimming Activity and Boldness Explain Variation in Feed Intake and Growth of Sole (Solea solea) Reared in Captivity
The major economic constraint for culturing sole (Solea solea) is its slow and variable growth. The objective was to study the relationship between feed intake/efficiency, growth, and (non-) feeding behaviour of sole. Sixteen juveniles with an average (SD) growth of 2.7 (1.9) g/kg0.8/d were selected on their growth during a 4-week period in which they were housed communally with 84 other fish. Selected fish were housed individually during a second 4-week period to measure individual feed intake, growth, and behaviour. Fish were hand-fed three times a day during the dark phase of the day until apparent satiation. During six different days, behaviour was recorded twice daily during 3 minutes by direct observations. Total swimming activity, frequency of burying and of escapes were recorded. At the beginning and end of the growth period, two sequential behavioural tests were performed: “Novel Environment” and “Light Avoidance”. Fish housed individually still exhibited pronounced variation in feed intake (CV = 23%), growth (CV = 25%) and behavior (CV = 100%). Differences in feed intake account for 79% of the observed individual differences in growth of sole. Fish with higher variation in feed intake between days and between meals within days had significantly a lower total feed intake (r = −0.65 and r = −0.77) and growth. Active fish showed significantly higher feed intake (r = 0.66) and growth (r = 0.58). Boldness during both challenge tests was related to fast growth: (1) fish which reacted with a lower latency time to swim in a novel environment had significantly higher feed intake (r = −0.55) and growth (r = −0.66); (2) fish escaping during the light avoidance test tended to show higher feed intake (P<0.1) and had higher growth (P<0.05). In conclusion, feeding consistency, swimming activity in the tank, and boldness during behavioral tests are related to feed intake and growth of sole in captivity
TRAIL promotes caspase-dependent pro-inflammatory responses via PKCδ activation by vascular smooth muscle cells
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is best known for its selective cytotoxicity against transformed tumor cells. Most non-transformed primary cells and several cancer cell lines are not only resistant to death receptor-induced apoptosis, but also subject to inflammatory responses in a nuclear factor-κB (NF-κB)-dependent manner. Although the involvement of TRAIL in a variety of vascular disorders has been proposed, the exact molecular mechanisms are unclear. Here, we aimed to delineate the role of TRAIL in inflammatory vascular response. We also sought possible molecular mechanisms to identify potential targets for the prevention and treatment of post-angioplastic restenosis and atherosclerosis. Treatment with TRAIL increased the expression of intercellular adhesion molecule-1 by primary human vascular smooth muscle cells via protein kinase C (PKC)δ and NF-κB activation. Following detailed analysis using various PKCδ mutants, we determined that PKCδ activation was mediated by caspase-dependent proteolysis. The protective role of PKCδ was further confirmed in post-traumatic vascular remodeling in vivo. We propose that the TRAIL/TRAIL receptor system has a critical role in the pathogenesis of inflammatory vascular disorders by transducing pro-inflammatory signals via caspase-mediated PKCδ cleavage and subsequent NF-κB activation
Persistence of phylogeographic footprints helps to understand cryptic diversity detected in two marine amphipods widespread in the Mediterranean basin
Amphipods of the genus Gammarus are a vital component of macrozoobenthic communities in European inland and coastal, marine and brackish waters of the Mediterranean and the Black Sea. Exceptional levels of cryptic diversity have been revealed for several widespread freshwater Gammarus species in Europe. No comprehensive assessment has yet been made for brackishwater counterparts, such as Gammarus aequicauda and G. insensibilis, which are among the most widely dispersed members of the so-called “G. locusta group” in the Mediterranean and in the Black Sea. Here we probe the diversity of these morphospecies examining the partitioning of mtDNA and nDNA across multiple populations along their distribution range and discuss it within the regional paleogeographic framework. We gathered molecular data from a collection of 166 individuals of G. aequicauda and G. insensibilis from 47 locations along their distribution range in the Mediterranean including the Black Sea. They were amplified for both mitochondrial COI and 16S rRNA as well as the nuclear 28S rRNA. All five MOTU delimitation methods (ABGD, BIN, bPTP, GMYC single and multiple threshold models) applied revealed deep divergence between Black Sea and Mediterranean populations in both G. aequicauda and G. insensibilis. There were eight distinct MOTUs delimited for G. aequicauda (6–18% K2P) and 4 MOTUs for G. insensibilis (4–14% K2P). No sympatric MOTUs were detected throughout their distribution range. Multimarker time-calibrated phylogeny indicated that divergence of both G. aequicauda and G. insensibilis species complexes started already in the late Oligocene/early Miocene with the split between clades inhabiting eastern and western part of the Mediterranean occurring in both species at the similar time. Our results indicate a high cryptic diversity within Mediterranean brackishwater Gammarus, similar to that observed for freshwater counterparts. Moreover, the phylogenetic history combined with the current geographic distribution indicate that the evolution of botThis work was supported by Polish National Science Center (projects no. 2014/15/B/NZ8/00266 and 2015/17/N/NZ8/01628) and partially by the statutory funds of the Department of Invertebrate Zoology and Hydrobiology of University of Lodz. F. Costa and the University of Minho contribution was supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI). There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies
Behavioural indicators of welfare in farmed fish
Behaviour represents a reaction to the environment as fish perceive it and is therefore a key element of fish welfare. This review summarises the main findings on how behavioural changes have been used to assess welfare in farmed fish, using both functional and feeling-based approaches. Changes in foraging behaviour, ventilatory activity, aggression, individual and group swimming behaviour, stereotypic and abnormal behaviour have been linked with acute and chronic stressors in aquaculture and can therefore be regarded as likely indicators of poor welfare. On the contrary, measurements of exploratory behaviour, feed anticipatory activity and reward-related operant behaviour are beginning to be considered as indicators of positive emotions and welfare in fish. Despite the lack of scientific agreement about the existence of sentience in fish, the possibility that they are capable of both positive and negative emotions may contribute to the development of new strategies (e. g. environmental enrichment) to promote good welfare. Numerous studies that use behavioural indicators of welfare show that behavioural changes can be interpreted as either good or poor welfare depending on the fish species. It is therefore essential to understand the species-specific biology before drawing any conclusions in relation to welfare. In addition, different individuals within the same species may exhibit divergent coping strategies towards stressors, and what is tolerated by some individuals may be detrimental to others. Therefore, the assessment of welfare in a few individuals may not represent the average welfare of a group and vice versa. This underlines the need to develop on-farm, operational behavioural welfare indicators that can be easily used to assess not only the individual welfare but also the welfare of the whole group (e. g. spatial distribution). With the ongoing development of video technology and image processing, the on-farm surveillance of behaviour may in the near future represent a low-cost, noninvasive tool to assess the welfare of farmed fish.Fundação para a Ciência e Tecnologia, Portugal [SFRH/BPD/42015/2007]info:eu-repo/semantics/publishedVersio
- …