
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-21-2011

QUEST Hierarchy for Hyperspectral Face
Recognition
David M. Ryer

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Other Engineering Commons

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Ryer, David M., "QUEST Hierarchy for Hyperspectral Face Recognition" (2011). Theses and Dissertations. 1511.
https://scholar.afit.edu/etd/1511

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/315?utm_source=scholar.afit.edu%2Fetd%2F1511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1511?utm_source=scholar.afit.edu%2Fetd%2F1511&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


  
 
 

  

 Title Page 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

Air Force Institute of Technology 
 

Wright-Patterson Air Force Base, Ohio 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 

QUEST HIERARCHY  

FOR  

HYPERSPECTRAL FACE RECOGNITION 

 

Dissertation  
 

David M. Ryer, Lt Col, USAF 

 

AFIT/DS/ENS/10-03M 



  
 
 

  

The views expressed in this dissertation are those of the author and do not reflect the 
official policy or position of the United States Air Force, Department of Defense, or the 
United States Government. 
 
 
 
 



  
AFIT/DS/ENS/10-03M 
 

  

QUEST HIERARCHY FOR HYPERSPECTRAL FACE RECOGNITION 

 

DISSERTATION  

 

Presented to the Faculty  

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

in Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

 

 

David M. Ryer, BS EE, MS OR 

Lieutenant Colonel, USAF 

 

February 2011 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 



  
AFIT/DS/ENS/10-03M 
 

  

QUEST HIERARCHY FOR HYPERSPECTRAL FACE RECOGNITION 

 
 

David M. Ryer, BS EE, MS OR 
Lieutenant Colonel, USAF 

 
 
 

     Approved:       Date 
 
 
 ______//SIGNED//_________________________  21 MARCH 2011
 Dr. Kenneth W. Bauer 

Committee Chairman 
 
 
            ______//SIGNED//_________________________  21 MARCH 2011 

Dr. Michael J. Havrilla 
Dean’s Representative 

 
 
            ______//SIGNED//_________________________  21 MARCH 2011 
 Dr. Mark E. Oxley 

Committee Member 
 

//SIGNED//_________________________   21 MARCH 2011 
 Dr. Steven K. Rogers 

Committee Member 
 
 
  Accepted: 
 
 
 

____//SIGNED//______________________  21 MARCH 2011 
Dr. Marlin U. Thomas 
Dean, Graduate School of Engineering and Management 

 

 



  
AFIT/DS/ENS/10-03M 
 

  

Abstract 

 

Face recognition is an attractive biometric due to the ease in which photographs 

of the human face can be acquired and processed.  The non-intrusive ability of many 

surveillance systems permits face recognition applications to be used in a myriad of 

environments.  Despite decades of impressive research in this area, face recognition still 

struggles with variations in illumination, pose and expression not to mention the larger 

challenge of willful circumvention.  The integration of supporting contextual information 

in a fusion hierarchy known as QUalia Exploitation of Sensor Technology (QUEST) is a 

novel approach for hyperspectral face recognition that results in performance advantages 

and a robustness not seen in leading face recognition methodologies.   

This research demonstrates a method for the exploitation of hyperspectral imagery 

and the intelligent processing of contextual layers of spatial, spectral, and temporal 

information.  This approach illustrates the benefit of integrating spatial and spectral 

domains of imagery for the automatic extraction and integration of novel soft features 

(biometric).  The establishment of the QUEST methodology for face recognition results 

in an engineering advantage in both performance and efficiency compared to leading and 

classical face recognition techniques.  An interactive environment for the testing and 

expansion of this recognition framework is also provided. 
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I. Introduction 

 

Social interaction and communication depends heavily on the amazing face 

recognition capability that humans possess.  In a myriad of environments and views, 

people are able to quickly recognize and interpret visual cues from another person’s face.  

This impressive ability has sparked the interest of researchers from the cognitive sciences 

to statistical pattern recognition.  This remarkable aptitude is the elusive performance 

standard that motivates and confounds developers for computer vision and biometric 

recognition systems. 

During the last decade, there have been several factors that have accelerated the 

advances in face recognition and biometric technologies.  One factor is the intensified 

focus on security issues throughout the world because of the expanding threat and terrible 

repercussions of terrorist acts.  A second factor is the advancement and availability of 

supporting technologies.  The popularity of portable electronic devices such as the cell 

phone, personal computing devices, and digital cameras create the means for a very 

capable surveillance system for any office or street corner.  This technology along with 

the growing wireless network can enable the persistent monitoring of a very large portion 

of the globe. 

Within this environment, face recognition offers an attractive and non-intrusive 

biometric that can be leveraged to exploit such opportunities.  Unfortunately, the task of 
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developing a robust recognition system is not a trivial problem.  These systems must 

possess the sensitivity to detect the smallest changes in human appearance and a 

robustness to be used in a multitude of operating environments but still maintain an 

efficiency that can be utilized real-time on large segments of the world’s population.  

Despite years of creative development and scientific advancement, current face 

recognition algorithms are challenged by natural variations in illumination, pose, and 

expression and will soon face an expected barrage of spoofing attempts in critical 

security applications.   

Given these challenges, the design of a biometric identification system needs to 

possess certain characteristics to make it an effective operational system.  These 

attributes include universality, distinctiveness, permanence, collectability, performance, 

acceptability, and circumvention [1].  The face recognition modality unfortunately suffers 

from weaknesses in the areas of uniqueness, performance, and circumvention [2].  The 

well-known biometric researcher and educator, Jain [3] lays out three basic requirements 

for a face recognition system to be effective.  These basic capabilities are an ability to 

detect whether a face is present, the means to locate the face, and then the capacity to 

recognize the face from a general viewpoint.  Within this structure, the performance 

target for a computer based face recognition application is to mitigate these weaknesses 

while achieving a recognition capability equal to that of a human.   

The use of hyperspectral imagery (HSI) and the contextual information layers 

contained within these image cubes provides the cues to creating a hierarchal 

methodology that can address the common challenges for face recognition systems.  

Using a variety of features that play an important role in human cognition and span 
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general characteristics to specific attributes, a fusion hierarchy is developed that 

incorporates key QUEST (QUalia Exploitation of Sensor Technology) tenets.  The result 

is a face recognition methodology that provides a performance improvement and 

operational robustness that exceeds classical face recognition methodologies. 

This paper documents the research to address the weaknesses of classic face 

recognition algorithms with the development of a novel methodology and the utilization 

of hyperspectral imagery.  In Chapter 2, the insights from the study of human recognition 

is examined to discover clues that may valuable to the development of a similar 

capability using computer recognition algorithms and methods.  Chapter 3 follows with a 

discussion of the more common face recognition algorithms.  Important design aspects 

are reviewed to include the construction of the comparison space, selection of distance 

measures and possible strategies for improving the performance of existing recognition 

algorithms. Chapter 4 catalogues the research process and challenges faced during the 

exploration of data and development of the QUEST face recognition methodology.  The 

experimental results and performance comparisons are contained in Chapter 5.  The 

conclusion in Chapter 6 summarizes many of the insights gleaned from this effort as well 

as the contributions of this research.  The promise of future research in this field is 

immense and Chapter 7 discusses some of the possibilities and associated security and 

defense applications. 
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II. Human Recognition 

Cognitive Research  

A compilation of lessons learned from cognitive science was published by Sinha 

[4] and provides a valuable foundation for researchers in the field of computer vision.  

The standard for face recognition performance is to match or exceed the ability of 

humans to recognize faces and so leads us to this natural and logical starting point.  In the 

design of current face recognition systems, there is usually an effort to process imagery 

with ever-increasing resolution in order to improve performance.  As illustrated in Figure 

1, only a small amount of resolution is required to recognize well-known faces.  In this 

instance, the blurred images, equivalent to an image resolution of only 7x10 pixels, are 

recognizable to most readers despite the relatively poor picture quality [4]. 

 

 
 

Figure 1:  Blurred Images of Familiar Faces [4] 
   

A person’s robust capability to identify an object is not solely reliant on the 

quality of the image.  Another example of degradation that human recognition can 

overcome is illustrated in Figure 2 [4].  In these images, the width of the face is 
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compressed to one quarter of the original size and yet these familiar faces are easily 

recognized.  In this case, much of this ability is attributed to the fact that the proportions 

are stable in at least one direction (vertically). 

 
Figure 2:  Compressed Images of Familiar Faces [4] 

 

The amount of variation that a human recognition system can withstand is 

impressive, but there are some important visual cues that can quickly result in a severly 

degraded system.  By altering the color and pigmentation from the album cover of “We 

Are the World” (Figure 3) many famous and recognizeable performers such as Micheal 

Jackson, Stevie Wonder, and Ray Charles become almost impossible to identify.  The 

change in contrast, similar to that seen in photograph negatives, offers a confusing 

representation from which many observers have trouble identifying a single face from the 

many celebrities located in the crowd [4].   

 
 

Figure 3:  Negative Contrast of the Album Cover, "We Are the World" [4] 
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 Sinha [4] offers another illustration to convey the importance of contextual 

information contained in color or grayscale images.  In of many recognition algorithms, 

considerable effort is applied to obtaining detailed edge information.  In Figure 4, a 

contour or edge map representation provides a confusing representation of two well 

known actors, Jim Carrey and Kevin Costner [4].  Advancements in the detection and the 

retention of high frequency information has benefited face recognition systems but this 

representation alone appears to be insufficient for our own human recognition system. 

 
 

Figure 4:  High Frequency Spatial Information [4] 
 

 An important element from cognitive research that has influenced the 

development of face recogniton algorithms is the role that holistic processing plays in our 

own recogntion system.  As depicted in Figure 5, the image halves of Woody Allen and 

Oprah Winfrey are not easily discernible until they are seperated into distinct halves.  The 

natural holistic processing of the whole image is difficult to overcome and impedes the 

ability to distinguish the two identities [4].  By trade, portrait artists are intimately 

familiar with the features of the face and are suspectible to the holistic influence of the 

face.  In the instruction of new artists and in the practice of accomplished artists, a potrait 
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begins by first schetching the silhouette of the head followed next by the placement and 

construction of internal features all guided by the context of the face’s outline [5].   

 

 
Figure 5:  Holistic Processing of Faces [4] 

 

Jarudi’s research explored the relative importance of these external features, such 

as the outline or shape of the head and face, versus the internal features of a face, to 

include the eyes, nose and mouth, as well as their configuration [6].  Using human test 

subjects to evaluate each feature hierarchy, it was discovered that the importance of these 

features vary as the resolution of the image changes.  An example of the images used to 

test these effects are shown in Figure 6.   

 

 

Figure 6:  Combinations of Internal and External Features [6] 
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The results, shown in Figure 7, indicate that the recogniton of external features 

decrease at a gradual linear rate as the resolution decreases, whereas the recognition rates 

for internal features decreases non-linearly and more abruptly as resolution decreases.  

These findings suggest that image quality or resolution should guide the relative 

weightings for external features versus internal features for classification systems that 

integrate both for maximum peformance.   

 
Figure 7:  Recognition Results of Internal, External and Whole Face [6] 

 

In addition to these insights concerning the processing of images and their 

features, current cognitve research can help strengthen our understanding of how faces 

are stored and recalled from memory.  Studies reveal that a caricatured representation of 

the true image can be beneficial for human recognition performance [4].  A veridical or 

true representation of a face is important in correctly matching the identity of an 
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individual but an exaggerated version, emphasizing changes from an average or generic 

face, has been shown to support recognition accuracy.  An example of this representation 

with respect to face shape and pigmentation is shown in Figure 8.  This figure depicts the 

true representation, the average face of all those in memory, and a caricatured 

representation embellishing the difference or variance between the two [4].   

 

 
 

Figure 8:  Observed Face, Average Face, and Caricatured Face [4] 
 
 

 
 

Figure 9:  Face Space Depicting Aftereffects [4] 
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 In addition to the impact that variance has on face representations, there is also a 

detectable bias that is obtained after prolonged observation of a particular face [4].  This 

concept is illustrated in Figure 9, as the center image circled in blue is the true image of 

the person we initially observed, and later want to identify.  After shifting focus to a face 

located on the perimeter, annotated by a green circle, and maintaining the gaze for a 

sustained period of time, our recollection of the original face is now biased in the 

opposite direction, away from the face image on the perimeter and along the radial axis to 

a representation marked by a red circle.   

In one study, the recognition capability of humans was investigated to better 

understand the distribution of faces that are stored in memory as well as the 

dimensionality of the human face space model [7], [8].  The findings of this research, not 

surprisingly, showed that distinctive faces are more easily identified than typical faces 

and intuitively this may be due to the  location and distribution of these faces in the 

human face space.  During testing, distinctive faces resulted in both a higher true positive 

rate and a lower false positive rate than typical faces.  This discovery parallels a 

phenomenon known as the Doddington Zoo effect identified in voice identification [9].  

In much the same way, easily distinguishable individuals, known as sheep, had a higher 

ability to be accurately identified, while other more typical voices, known as goats, were 

consistently difficult to recognize. 

Using a comparison space or face space perspective, these distinctive faces are 

located further away from neighboring faces and are more easily identified.  The center 

of the space represents the average face of the population with typical faces located 

densely near the center and a sparse distribution of distinctive faces located on the 
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peripheral.  An assumption of a multivariate normal distribution of faces is commonly 

used to represent this distribution of face images [7].  This distribution was demonstrated 

empirically by Johnston's research [8] and the results are portrayed in two dimensions in 

Figure 10.  The similarity between faces is measured by the separation distance and the 

summed similarity between all exemplars can serve as an indication of the expected 

identification performance.  This insight seems to be understood by the academic 

research community, as many common face recognition databases are comprised of a 

varied and diverse group of subjects.  If the current limitations to understanding the 

dimensionality of the human face space were surpassed, algorithms and metrics could be 

better tailored to mimic the ability to measure and distinguish features in this multi-

dimensional representation space.   

 

 

Figure 10:  Face Distribution of Faces [8] 
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Cognitive Disorders 

Valuable insights are gained by exploring the normal performance and 

representations used in human recognition, but also in the dual of the problem by 

examining disorders that can destroy this fragile ability.  Two cognitive conditions that 

affect recognition are Prosopagnosia [11] and the Capgras delusion [10].  The breakdown 

in the critical links affected by these disorders may offer clues to the structure and 

functionality of the systems that provide robust recognition capability.   

Prosopagnosia is the failure of people to recognize faces very familiar to them.  

People with this disorder maintain the ability to interpret facial gestures but a close friend 

can become an instantaneous stranger with as little as a change in lighting or background 

setting [11].  On the other hand, Capgras delusion is the belief that a face, although easily 

recognized, is a disguised imposter or body double [10].  These two disorders and their 

underlying symptoms, however different, may collectively provide some understanding 

of the cognitive process used during human recognition. 

For years, human recognition was believed to be a sequential process.  However, 

the close examination of the skin conductance response (SCR) of patients afflicted with 

these disorders suggests otherwise [10].  SCR is a measure of the skin’s electrical 

conductance caused by changes in the level of perspiration in the sweat glands due to 

nervous system activation [10].  Prosopagnosia patients show indications of elevated 

SCR when they look at a familiar face, indicating an underlying positive response by the 

nervous system, despite the lack of a conscious recognition of the person.  Alternatively, 

a patient suffering from the Capgras delusion shows no changes in their SCR, despite the 
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fact that can outwardly name the face they are looking at.  In both these cases, the ability 

to recognize a face is uncoordinated at the emotional or physiological level.  A fully 

functional system relies on the integration and synchronization of both these systems. 

Tranel [11] found that patients incapable of face recognition were still able to 

recognize facial gesture, age, and gender.  This outcome once again suggests that there 

are separate processes involved, an overt process that enables humans to identify faces 

and a covert process that allows individuals to connect familiar information for 

confirmation [10], [11].  These separate processes may also mirror the cognitive and 

Libet processes discussed later when the Qualia Exploitation of Sensor Technology 

(QUEST) methodology is discussed.  The inability to integrate these processes results in 

significant capability degradation for the human recognition system and perhaps the 

failure to consider these links for computer recognition systems prevents them from 

reaching the performance benchmarks seen in human recognition. 

Environmental variations can also have a significant effect on the human 

recognition system.  Yin [12] explored the degraded ability of humans to recognize faces 

when they are upside down.  Findings from his research demonstrated that many mono-

oriented objects are difficult to recognize when inverted and that the human face is one 

that is most predominately affected.  The well-documented Thatcher illusion [13] shows 

the dramatic effect that inverting a face has on our powers of observation.  In the 

Thatcher illusion, the observer is unable to realize that internal facial features, such as the 

mouth and eyes, have been flipped upside down when portrayed in a face that has itself 

been inverted.   
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This powerful effect of face orientation has been seen firsthand in the U.S. Space 

Program where astronauts merely observe another crewmember’s upside down face and 

the entire perception of their orientation is quickly altered often resulting in disorientation 

and sometimes motion sickness [14].  This particular shortcoming of the human 

recognition system can be overcome by using pose invariant computer algorithms such as 

Scale Invariant Feature Transform (SIFT) that can identify objects regardless of 

orientation.  

Human vs. Computer Recognition 

The ability of the human recognition system is held as the performance 

benchmark for classification methods and was challenged for the first time in the 2006 

Face Recognition Vendor Test (FRVT).  The FRVT tested human performance against 

the best performing commercial algorithms [15].  The human recognition evaluation used 

26 students who had to evaluate 80 pairs of male and female faces.  The image pairs were 

presented side by side for only two seconds.  Afterwards, students selected a rating from 

1 (sure both images were the same person) to 5 (sure both images were different people).  

The results, shown in Figure 11, showed that several of the more advanced systems could 

exceed human ability in this subjective test [15].  There was no mention whether 

computational algorithms used the same incremental evaluation scale.  
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Figure 11:  ROC of Human and Computer Performance on Matching Faces [15] 
 

Although commercial recognition systems appear to be approaching the ability of 

human recognition, these test results were obtained in a controlled environment.  In 

addition, the subjective scale and time constraint used in testing provides an advantage to 

the recognition algorithms.  Unfortunately, these same recognition algorithms are 

required to operate in uncontrolled environments challenged by various levels of 

cooperation from the intended subjects.  Despite the level of sophistication of these 

commercial systems, the performance and reliability of these systems still require a 

human in the loop to confirm the results for real world applications.  

 

Summary 

Cognitive research has greatly aided our understanding of the human recognition 

system and can serve as a useful guide for recognition system development.  Using these 

findings, the training procedures and transformation techniques used to create a face 
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space could exploit the variance and bias of observed faces as well as using the relative 

value of shape, color, and resolution.  Face recognition algorithms may benefit from a 

structure that represents a parallel neural system of the human mind that incorporates 

holistic face recognition processes, feature based representation, and various levels of 

semantic representation.  Research has shown that recognition processes that fail to 

combine both spatial and contextual information have limited capability for the 

demanding task of face recognition.   
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III. Face Recognition Systems 

 

In an attempt to introduce several important considerations for the design and 

implementation of a face recognition system, an assortment of topics will be covered in 

this chapter.  This discussion will start with the basic components of a generic biometric 

system and move to the research trade space in which this effort will reside.  A sampling 

of common algorithms will be reviewed for consideration to include Eigenfaces, 

Fisherfaces, and neural networks.  Additional considerations within these algorithms, 

such as the comparison space, distance measurements and feature selection, play an 

important role and need some discussion as well.  With this basic understanding, a 

summary of current challenges for recognition systems will be examined. 

 

 
SENSOR 

FEATURE 
EXTRACTION MATCHING DECISION 

MAKING 
 

 
 

Figure 12:  Conventional Biometric System Components 
 

Biometric systems are comprised of four basic components.  The components, 

depicted in Figure 12, are the sensor, feature extraction module, matching module and the 

decision-making module [16].  The sensor module acquires the biometric data (i.e. a 

measurement) from the intended subject.  The feature extraction module processes the 

captured data from the sensor and extracts features.  The matching module compares the 

extracted features against stored features that are saved in memory and generates 
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comparisons called match scores.  Match scores are comparisons made in a multi-

dimensional comparison space and are a measure of distance between two images.  The 

decision-making module takes these scores and determines the user's identity by selecting 

the stored features (identification) associated with the smallest match score or by 

evaluating the obtained match score against a threshold for the claimed identity's features 

(verification). 

 
 
 
Research Trade Space 

 

This research will utilize existing hyperspectral data that has been obtained with 

an experimental sensor.  This research effort will focus on the last three components, 

particularly the selection of features and how they are utilized.  For face recognition 

systems, feature extraction can be based on internal features, a holistic representation, or 

a combination of both.  Internal features range from the shape and size of the eyes, nose, 

or mouth to their location on the face as well as their geometric proximity to each other.  

A holistic representation captures the entire image using the individual parts and the 

surrounding backdrop of the entire face.  This research will explore a range of these 

spatial features and look for opportunities to combine them for synergistic effects. 

The spatial domain has been the predominant dimension of face recognition 

research with a primary focus on grayscale and color images.  More recently, the 

advancement of sensor technology has allowed examination of a wider continuum of the 

electromagnetic spectrum.  Thermal imagery has proved beneficial for detection and 

tracking functions but for identification purposes, it suffers from sensitivities to changes 
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in environmental temperature, thermal patterns of the face, and its inability to penetrate 

glass [17], [18].  Due to national security requirements, wavelengths beyond the visible 

and infrared (IR) are being explored for use in security systems to penetrate clothing and 

skin.  A recent and highly controversial example of this technology has been seen in the 

terahertz and millimeter wave technology being tested and implemented in many of our 

major airports. 

Finally, the widespread use of video imagery in security systems has resulted in 

the need for reliable and efficient methods to process the large amount of collected data.  

The performance requirements for these methods must exceed the processing capability 

of human beings given the volume of data and number sensors.  These processing 

systems need to incorporate methods developed to handle both the spatial and spectral 

elements of the data, offering an efficient way ahead to take advantage of the temporal 

aspects of real time multispectral video.  This same challenge of processing vast amounts 

of data is facing our nation’s military forces as full motion video and advanced sensors 

are employed to meet the targeting requirements of current operations. 

The method of analyzing extracted features and images is dependent on the 

chosen algorithm, the projected comparison space, and the metrics selected for 

assessment.  This daunting assignment and the aim of this research is to take this general 

task and apply it to the spatial, spectral, and temporal domains simultaneously.  The 

development of an approach that integrates all three dimensions can mitigate many of the 

challenges and offer new capabilities not seen in any single domain.  The goal of this 

study is to provide a framework to process and match imagery using cues from the 

research environment shown in Figure 13. 
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Figure 13:  Face Recognition Research Trade Space 
  

Common Algorithms 

Before creating a methodology for hyperspectral face recognition, it is important 

to understand the theory behind some of the most accepted algorithms used in the spatial 

and spectral dimensions.  By identifying and combining the strengths of individual 

methods for each dimension, a more capable methodology should be possible.  A brief 

overview of two of the leading face recognition algorithms follows. 

 

Eigenface 

One of the most popular and widely tested face recognition techniques is the 

Eigenface method.  Kirby and Sirovich [19] introduced the concept of representing faces 
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with a weighted sum of eigenvectors almost two decades ago.  Shortly after, Turk and 

Pentland [20] used the concept to devise the Eigenface method.  This holistic approach 

was as an attempt to replicate the cognitive aspects of human recognition.  At the time, 

this method provided an alternative to the many feature-based methods that relied on 

specific features of the face, but discarded a large portion of the image as well as the 

contextual information contained therein.   

A brief description of the eigenface algorithm follows [20], [21].  For each of the 

M training face images, comprised of N x N pixels, the pixel intensity values from each 

image (i) are concatenated into a single vector, iΓ .  The average face image,Ψ , is 

calculated using all M face vectors.  The difference from the average face, iΦ , is then 

calculated for each image and then stored into a matrix of difference face vectors, A.  

These steps are summarized in Equation 1. 
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Equation 1:  Matrix of Gallery Faces - Difference from Average Face

 
 

When principal component analysis (PCA) is applied, it is used to find a set of M 

orthonormal vectors, u, that best represents the data distribution.  These M vectors are 

chosen to satisfy the following equation. 
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 Equation 2:  Determination of PCA Eigenvectors and Eigenvalues [20] 
 

These scalars, λk, and vectors, uk, are the eigenvalues and eigenvectors of the 

covariance matrix (C).  Unfortunately, this becomes computationally prohibitive due to 

the size of the images (N x N) and the resulting size of the covariance matrix (N2 x N2).  A 

more useable representation, L, utilizes the same eigenvectors but in a compact structure 

(M x M).  The calculation of L using the matrix of difference face vectors, A, is shown in 

Equation 3. 
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Equation 3:  Alternative Representation of Covariance Matrix of Faces 
 

Using the eigenvalue ( )iµ and eigenvector ( )ιv of L, the eigenvalue ( )iµ and 

eigenvector ( )iAv comprised of iv , can be derived for C.  The l eigenvectors of L are 

used to represent the distribution of the data but in a smaller dimensional subspace, 

known as the face space.  The relationship between the eigenvalues and eigenvectors of C 

and L are shown in Equation 4.   
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Equation 4:  Relationship between Eigenvectors and Eigenvalues

 
 

The eigenvectors ( )ιv of L are used to produce the basis of ghostly face images )l( u that 

are illustrated in Figure 14. 

 

Figure 14:  Basis of Eigenfaces 
 

These images, known as eigenfaces, serve as the basis for our face space and are 

calculated in Equation 5.   

1

M

l lk k
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= ∑ Φu υ  

Equation 5:  Eigenfaces
  

A linear combination of these eigenfaces is used to recreate all the faces stored in 

the gallery.  A new test face, called a probe, is similarly transformed to an average 

subtracted face ( iΦ ) much like the gallery images were previously.  The probe ( )newΓ is 
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projected into a face space and represented by a vector of weights ( TΩ ) that describe the 

contribution from each of the eigenfaces.  Equation 6 formulates these steps.   
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Equation 6:  Projection into Face Space
  

To further reduce the computational requirement, a subset k of the initial M 

eigenfaces are usually retained for use.  These k eigenfaces are chosen to represent a 

majority of the information in the face space based on their eigenvalues.  This is no 

different than deciding on how many significant principal components to retain during 

PCA to capture the majority of variability in any generic dataset.  Matching the identity 

of the new test face is accomplished by finding the minimum distance ( kε ), in this case 

Euclidean distance, between the probe (Ωnew) and a gallery face (Ωk) that have both been 

projected into the comparison face space (Equation 7). 

 

2
k new kε = −Ω Ω  

Equation 7:  Distance between Faces 
 

This approach can also be applied to discern face images and from non-face 

images, or the recognition of any object given an adequate gallery of like object images.  

When a face representation uses a subset of k eigenfaces, some information is lost and 

this quantity is referred to as reconstruction error.  The radius of the initial face space can 

serve as a threshold to assist in comparing the magnitude of these errors.  Based on this 
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initial face space threshold, an image’s reconstruction error would indicate that it is a 

non-face image if its error is larger than the face space threshold.  This application can be 

applied in the following manner to filter out any images that are not faces, avoiding 

unnecessary processing, and matching attempts of non-face images (Equation 8). 
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Equation 8:  Face Space Threshold 
 

Likewise, images falling inside the face space threshold would be identified as 

face images and subsequently evaluated against a gallery of stored face images for the 

closest match.  Comparisons can be made in the lower dimensional face space using any 

of a variety of distance metrics aside from the Euclidean distance depicted above.  These 

measurement options will be discussed later.  An overview of the eigenface method is 

provided in Figure 15, that summarizes each step as well as the two possible outcomes 

where the distance measure ε, identifies it as a non-face and the process stops, or else ε 

falls within the face space threshold and Ω comparisons proceed to an identity [20]. 
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Figure 15:  Summary of Eigenface Procedure [20] 
 

Fisherface 

 
The type of projection used to transform the original image into an alternative 

comparison space has a significant impact on the utility of the matching algorithm.  The 

Eigenface algorithm was designed to exploit the holistic nature of the face image using 

PCA.  Similarly, the Fisherface algorithm was designed to be insensitive to changes in 

lighting conditions and facial expressions using Linear Discriminant Analysis (LDA).  

These variations illustrated in Figure 16 can be some of the most troublesome for face 

recognition algorithms as the measured difference caused by these variations are greater 

than the difference between dissimilar faces.  

 

 
 

Figure 16:  Same Person with Different Expression and Lighting [22] 
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Using Fisher’s LDA projection method, Belhumeur chose a linear projection that 

was orthogonal to the within-class variations (lighting and expression for a single subject) 

while maintaining the between-class variance (difference between different subjects) 

[22].  Comparatively, the Eigenface method uses a projection direction that maximizes 

variance across all images and therefore is subject to errors due to lighting and 

expression.  Duda best summarizes the difference in the following example.  PCA 

focuses on the gross features that characterize O’s and Q’s but might not notice the tail of 

the Q [23].  Discriminant analysis seeks directions that are useful for discrimination 

whereas PCA looks for efficient representation [23]. 

For the Fisherface method, a projection is chosen that maximizes the ratio of the 

between scatter and within scatter.  The images ( 1 2, ,... ix x x ), mean images ( 1 2, ,... iµ µ µ ) of 

the subject class iχ , and the number of images in subject class i, iχ  are used to 

determine the between and within scatter as shown in Equation 9.  
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Equation 9:  Between and Within Class Scatter [22] 
 
 
Since the within-class scatter SW is singular, Fisherface first uses PCA to reduce the 

dimensionality of the face space, before calculating scatter using the previous equations. 
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Algorithm Extension for Pose and Internal Features  

 

Pentland extended his initial work on eigenfaces with an effort that explored the 

benefit of a view-based eigenspace [24].  A view-based method can be constructed by 

developing comparison spaces using only images with the same pose and repeating this 

process for all possible poses.  Using a distance from face space (DFFS) measurement, 

previously referred to as the reconstruction error in the eigenface overview, the 

orientation of an image can be determined based on which view space projection results 

in the smallest DFFS [20].   

Determining the view space of an image allows the high dimensional face space 

to be divided into distinct regions.  Prince devised an alternative approach for more 

challenging problems using a pose dependent linear transform to represent all poses 

called Tied Factor Analysis [25].  The goal of this approach was to address the problem 

of matching face images that are taken at a different pose compared those that are 

contained in the gallery.  Prince’s solution used a linear mapping to take images from an 

observed image space to an ideal identity space where an individual’s salient features do 

not vary with pose.  Although both approaches have been tested on benchmark datasets, 

there is a computational simplicity that the view-based technique offers especially when 

it is applied to large populations.   
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Figure 17:  Eigeneyes, Eigennose, and Eigenmouth [24] 
 
 
 Pentland later modified the eigenface method to locate and identify facial features 

as depicted in Figure 17 [24].  This eigenfeature approach mitigates weaknesses of the 

earlier eigenface algorithm when faced with occlusions, disguises, and changes in 

expression.  Insights from the cognitive research discussed earlier can guide the 

combination and weighting of prominent features according to their relative contribution 

to recognition.   

 Findings that acknowledged the importance of eyes and eyebrows recommend 

that these features be heavily weighted compared to other face features [4].  On the other 

hand, the mouth feature can be lightly weighted due to the likely variations in expression 

that can present a significant departure from recognizing a neutral expression.  A 

confirmation of this shortcoming has been made by several state transportation 

departments as they have mandated that all new driver license photographs be taken with 

a neutral expression to aid their law enforcement identification systems.  For occluded 

images, individual features that are present or visible would be assessed a larger weight 



 
 
  

40 
  
 

than the overall face image.  A few illustrations of Pentland’s successful extension and 

application of the eigenfeature method are depicted in Figure 18 [24]. 

 

Figure 18:  Eigenfeature Testing [24] 
 

A combination of both the eigenface and eigenfeature methods into a collective 

score is shown to garner the highest performance as illustrated in Figure 19 [24].  

Cognitive researchers point to a possible parallel in human recognition processing that 

starts with a low-resolution holistic representation for general identification 

supplemented by high-resolution facial features to verify our initial recognition 

assumption [24]. 

 

Figure 19:  Recognition Rate for Eigenfaces, Eigenfeatures and Combined [24] 
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Neural Networks 

A promising approach for complex pattern recognition is the application of neural 

networks (NN).  Given the dimensionality of the face recognition problem and the desire 

to recreate the human cognitive ability, it is no surprise that NNs are regularly considered 

in face recognition applications.  Duda replicated the previous data analysis technique of 

PCA with a three layer neural network with linear hidden units [23].  Although not 

discussed here, applicable techniques such as Nonlinear Component Analysis (NLCA) 

are also demonstrated by Duda in the form of a five layer neural network with two layers 

of sigmodal units and even the successful Independent Component Analysis (ICA) 

technique is demonstrated in a NN form [23]. 

Radial Basis Function NNs (RBFNN) are advantageous because they are 

universal approximators, possess the best approximation property, and display a compact 

topology with fast learning speeds [27].  A typical small training set for each individual 

and the accompanied high dimensionality of the image presents hurdles that these 

classifiers must first overcome.  Some of the common difficulties involve over fitting, 

overtraining, and small sample effect may be addressed in preprocessing or in an adaptive 

NN application.   

The general goal of NN design for face recognition is to develop a compact 

representation of faces capturing the features critical for identification.  Pan [26] used one 

such approach in the application of NNs to classify individuals after the redundancy of 

important facial features were reduced using Discrete Cosine Transforms (DCT).  Using 

only the DCT coefficients and the use of a back propagation NN a capable and fast 
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recognition system was developed using only grayscale images [26].  This successful 

compact transform displayed the ability to reduce data redundancy of the image but still 

maintain critical features for representing the mouth, eyes and hair [26]. 

   

 

Figure 20:  Diagram of RBF Neural Classifier [27] 
 

Another example of a NN approach was used by Er [27] and is depicted in Figure 

20.  This application applied sequential techniques that enabled the RBFNN to take 

advantage of the respective strengths of PCA and Fisher’s Linear Discriminant (FLD) 

method.  Through PCA, the dimension of the face vector can be reduced to a number of 

dimensions that is more manageable.  These features containing the highest variability 

are most useful for describing the data but not necessarily the best features for 

discrimination.  Consequently, in the next step, FLD technique is used to identify the 

most useful features.  The application of FLD to the projected training data can determine 

the best subspace for classification and separate the training data by maximizing the 

between-class scatter and minimizing the within-class scatter.   
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As mentioned earlier in the Eigenface and Fisherface applications, the solution to 

addressing particular shortcomings is usually a hybrid or fusion of complementary 

approaches.  An assortment of algorithms can be used in combination on various feature 

sets to overcome common face recognition challenges.  NN applications lend themselves 

to a single network approaches or just as easily to an ensemble of networks.  Hansen [28] 

proposed the implementation of NN ensembles to first classify inputs and then to form a 

consensus on the output in order to reduce the overall generalization error. 

The sampling of algorithms discussed are common examples to illustrate previous 

methods and their underlying logic.  For a more thorough discussion of the numerous 

face recognition algorithms available, several very good literature surveys are available 

that include Abate [29], Samal [110], Kong [18], Zou [30], and Zhao [31].  Transitioning 

from academic research to commercial applications,  the reoccurring vendor tests 

conducted by the National Institute of Standards and Technology (NIST) provide an 

excellent forum to illustrate the performance capability of commercial products but little 

insight into the guarded secrets of these proprietary applications [15][32].  The 

importance of algorithm design causes it to be both the central focus of research and then 

the heavily protected intellectual property of the technology industry.  With a basic 

understanding of both the strengths and weakness of basic techniques, we move to other 

design aspects that need to be considered in the development of these systems.  One 

important contributor to recognition performance is the construction of the comparison 

space where feature matching occurs.   
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Face Space  

Various research efforts have examined the creation and dimensionality of the 

comparison space commonly referred to as the “face space.”  The gallery is comprised of 

all stored images in memory and generally, a subset of these gallery images serves as the 

training set.  The face space is built using the training set and creates a smaller 

dimensional space comprised of uncorrelated features.  This space should balance the 

requirement to represent the variety of faces and their unique features but with a 

dimensionality that allows the system to be computationally efficient.  Academic research 

efforts often overlook this aspect, using closed experiments where all subjects contained 

in the gallery are used in the training set.  When evaluating larger datasets, the point of 

diminishing returns becomes evident as the addition of training images no longer result in 

performance improvement.   

In the eigenface approach, the effectiveness of the classifier can depend on the 

training set selected to create the face space.  Chawla investigated the creation of face 

space by observing the performance of a random ensemble of random face spaces 

compared to a chosen face space obtained by selectively dropping specific eigenvectors 

[33][34].  Chawla also explored the benefit of combining multiple classifiers operating on 

an ensemble of subspaces with randomly chosen dimensions [33].  His results indicated 

that an ensemble of classifiers working on random subspaces is often competitive and 

sometimes better than a single classifier working on a select face space.   

In a subsequent effort, Chawla created an algorithm that develops a face space 

based on the most diverse faces in a gallery [34].  The results obtained using a diverse 
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face space was more robust than a face space created from images with common 

illumination effects.  The diverse set of images achieved desired performance levels with 

a reduced number of training images and subsequently smaller dimensional face space.  

When creating a training set it is advantageous to include an assortment of environmental 

effects and images to create a robust capability that can be employed outside the 

laboratory. 

Once the selection of training images is determined, a subsequent decision must 

be made regarding the number of eigenfaces to retain.  It is common practice to reduce 

the dimensionality of the face space by discarding eigenvectors corresponding to the 

highest and lowest eigenvalues.  Eigenvectors associated with the highest eigenvalues are 

usually associated with the variation of illumination effects.  Eigenvectors associated 

with the lowest eigenvalues are often associated with high frequency information that 

does not always contribute to improved recognition.  This phenomenon was apparent in 

earlier cognitive examples as well.  General rules of thumb for choosing the number of 

eigenfaces are recurring but established guidelines do not formally exist [33].   

An initial trial and error approach is also commonly used to explore the 

performance limitations for a particular data set with their subsequent findings guiding 

the eventual implementation.  Robinson [21] explored this aspect in a number of 

experiments and identified the diminishing level of performance of additional eigenfaces.  

The results of his experiments on three popular face databases (Rice, AT&T, and Yale) 

are shown in Figure 21 [21].  His findings reinforce the common practice of using a range 

of 5 to 10 prominent eigenfaces, as performance increases beyond this number 

experience diminishing returns.   
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Figure 21:  Recognition Capability with Increasing Number of Eigenfaces [21] 
 

Contrary to this practice, Penev showed in his research that the dimensionality of 

the face space could require anywhere from 400 to 700 eigenfaces to adequately capture 

the fine detail necessary for larger and more diverse face databases [35].  His findings 

suggest that even general characteristics such as gender, ethnicity, expression, overall 

shape, and illumination require in the range of 200 eigenfaces.  Based on his findings, 

Penev cautions on using a face space with too small of a face space, especially if the 

methods are applied to large datasets, high-resolution images, or those with additional 

variations such as pose or outward changes in appearance (i.e. glasses or hairstyles).   

If this practice is employed on databases of ever-increasing size, the 

computational cost of this method could become prohibitive.  For the widely used 

Eigenface algorithm, there are various opinions on the best implementation to represent 

the face space.  Despite the number of research efforts focused on this consideration, 

there is still an assortment of opinions concerning this important consideration.  A 
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mixture of selection practices seems to offer their own unique benefits but sometimes 

algorithm performance is more dependent on the data analyzed or the metrics used to 

measure similarity. 

 

Distance Metrics 

The selection of the distance metric is another aspect that can have a significant 

impact on the performance of the face-matching algorithm.  Similar to considerations for 

the development of the face space, there are also a number of common distance metrics 

that have evolved to maximize recognition performance.  A distance metric can be 

defined in the following manner (Equation 10). 
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Equation 10:  Definition of Distance Metric 
 

An array of these common distance measurements and calculations will be 

reviewed next.  Two of the more familiar metrics used are the city block (Manhattan) and 

Euclidean metrics shown in Equation 11. 
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Equation 11:  Common Distance Metrics 
 

 

Usually distances are measured and used in a manner where a smaller distance 

represents a closer match.  In the case of the correlation metric (Equation 12), the metric 

range of -1 (negative correlation) to 1 (positive correlation) is mapped into a range of 0 to 

2 for consistency.  Likewise, the covariance metric (Equation 13) that produces a 1, when 

the vectors are the same, and a zero, when they are orthogonal, is subsequently flipped to 

produce a 0 to 1 distance measurement.  

 

( ) ( )

( ) ( )

1

2 2

1 1

( , )     

( 1)
1 1

( , ) 1 ( , )

n

i i
i

Correlation n n

i i
i i

Correlation Correlation

u u v v
S u v

u u v v
N

N N

D u v S u v

=

= =

− −
=

− −
−

− −

= −

∑

∑ ∑
 

Equation 12:  Correlation Distance Measurement [36] 
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Equation 13:  Covariance Distance Measurements [36] 
 

As highlighted and tested by Miller [37], a distinction between the vectors 

representing the faces being compared needs to be differentiated when we are talking 

about a PCA or LDA space or a Mahalanobis space.  In PCA and LDA spaces, the 

respective face vectors being compared have a sample variance, σi
2 , that is represented 

by their eigenvalues, λi, whereas in Mahalanobis space the variance is one.  Using the 

formulation by Beveridge [36] and Miller [37], the Mahalanobis distance metrics, as ui 

and vi represent the associated face vectors in PCA/LDA space and mi and ni in 

Mahalanobis space as shown in Equation 14.    
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Equation 14:  Relation between PCA/LDA and Mahalanobis Space 
 

The city block and generic Mahalanobis distance are similar to their counterparts 

in PCA space but simply adjusted to Mahalanobis space.  These and other Mahalanobis 

distances are illustrated in Equation 15 [36]. 
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Equation 15:  Mahalanobis Distance Measurements [36] 
 
 

  
The Mahalanobis Cosine is the cosine of the angle between the two face vectors 

and is adjusted for a distance-like measurement.  While the Mahalanobis Cosine distance 

measurement has gained recent popularity and is often the default metric used in testing, 

some additional distance measurements, shown in Equation 16, have shown results 

comparable to the more traditional metrics. 

Research in this area has found that certain metric and algorithmic combinations 

perform better together but the overall success can also be affected by the database being 

used or even the individual face image that is being evaluated [37].  Given the importance 

of this selection, common testing environments such as the Colorado State University’s 

Face Identification Evaluation System [36], for example, have continued to incorporate a 

number of different metrics over time to investigate their algorithms and databases of 

grayscale face images.  Some additional distance measurements explored in the literature 

are shown in Equation 16. 
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Equation 16:  Additional Distance Measurements [37] 
 

 

Biometric Features 

A majority of face recognition applications utilize the overall appearance and 

spatial features of the face.  However, there are additional features that can be exploited 

to contribute to identify faces.  The role of soft biometrics, spectral signatures, and 

internal features are discussed in the following section. 

Soft Biometrics 

A face image contains traits that indicate gender, age, and ethnicity as well as 

unique supplemental characteristics related to their skin and hair that are valuable clues to 

describe and identify an individual.  Jain [38] defines soft biometrics as characteristics 

such as these “that provide some information about the individual, but lack the 

distinctiveness and permanence to sufficiently differentiate any two individuals.”  In 
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Jain’s fingerprint research [38], he demonstrated that the use of soft biometric 

information can significantly improve fingerprint recognition performance.  The same 

type of enhancement should be possible in an application to face recognition.   

Gender extraction has been performed by Balci [39], who used a multilayer 

perceptron (MLP) for gender classification in order to divide the face space into a male 

and female population.  Impressively, Moghaddam [40] was able to successfully 

implement support vector machines to characterize gender from as little as a low-

resolution thumbnail image taken from the popular Face Recognition Technology 

(FERET) database [41].  Another relevant factor related to gender is the fact that in 

commercial testing the identification rate for males is generally higher (6-9%) than 

females [32]. 

Age is another soft biometric category that can be extracted from face images and 

has been demonstrated in research experiments.  Kwon [42] devised a method to classify 

images as an infant, adult, or senior based on ratios calculated from the location of 

prominent facial features and the presence of wrinkles on the forehead and below each 

eye.  The underlying theory is based on the fact that children’s facial features lie 

predominantly in the lower portion of the face and that they gradually shift towards the 

middle of the face over time as the jaw and lower portion of face grows.  Older adults are 

distinguishable because of the increased number of wrinkles that comes with age.   

Horng [43] extended this work by classifying images in 4 separate age categories.  

Using sobel edge detectors, he located prominent facial features (eyes, nose, and mouth) 

and then determined wrinkle features such as density, depth and skin variance.  The 
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relative geometry of prominent face features is fed into the first of two back propagation 

NNs to identify infants [43].  Three wrinkle features of density, depth, and skin variances, 

are used in the second NN to further divide the non-infants into young, middle age, and 

senior adults.   

Mukaida [44] offered an alternative to applying global filters to identify wrinkles 

and spots from a grayscale image.  Using binary images and assessing the size, shape, 

and density of image blobs, Mukaida differentiates between primary facial features and 

secondary characteristics of wrinkles and spots [44].  By exaggerating or diminishing 

wrinkles and spots, he was able to change the appearance and estimated age of an 

individual [44].  Mukaida’s results suggest that humans estimate age based on spots, 

wrinkles, and face parts individually and then integrate them for an overall age 

assessment.  The ability to distinguish the wrinkle and spot features could prove very 

beneficial as distinguishing marks for older adults.  This soft characteristic of age has 

also been identified as a factor affecting the accuracy of face recognition systems where 

the older an individual is the easier it is to identify them.  In commercial testing it was 

found that recognition rates increase about 5% for every 10 years of age up through age 

63 [32].   

Gutta [45] looked at both gender and ethnicity through the use of RBFNN and 

inductive decision trees.  The results were impressive for both gender and ethnic 

classification with relative success rates of 94% and 96%, respectively.  Gutta proposes 

that a similar approach be utilized to discriminate images based on gender, age, and 

ethnicity before attempting recognition [45].   
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With the ability to distinguish these descriptive characteristics automatically, the 

incorporation of soft biometrics can be applied in the same manner as it was in 

fingerprint recognition to enhance face recognition.  In one example, Marcel [46] took a 

grayscale image and combined it with the RGB (Red, Green, and Blue wavelength) color 

distribution vector to improve overall recognition performance.  His results are in line 

with the cognitive research findings discussed earlier.  These results indicated that there 

is enhanced value of pigmentation or skin color in recognition applications [46], [4].   

The ability to use these soft biometric traits to enhance face recognition 

performance has been limited to single traits only and predominantly in the visible 

portion of the electromagnetic spectrum.  The sum of extracted soft features such as age, 

ethnicity, gender, and proportion of genuine and visible face surface (i.e. not masked with 

make-up, accessories or occluded) can provide valuable context in which to make 

identification decisions.  This awareness also offers an ability to select individuals that 

may be trying to avoid detection and warrant scrutiny.   

An enormous efficiency can be obtained, if a population of subjects can be 

quickly narrowed based on soft characteristics since only a fraction of the total images 

would have to be processed for matching.  Phillips [32] showed in the Face Recognition 

Vendor Tests that the accuracy of our best commercial systems is reduced approximately 

2-3% as the size of the database doubles in size.  By utilizing and interpreting contextual 

information contained within face imagery, it is possible to partition the number of faces 

in the gallery resulting in improved performance and efficiency.   
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Spectral Properties  

Face recognition applications continue to be challenged by variations in 

illumination.  The image that is captured by the eye or camera is dependent on the 

direction, amount, and type of illumination as well as the optical properties of the human 

skin.  The spectral reflectance of skin is mainly determined by the presence of pigment, 

or melanin, and blood, specifically oxygenated hemoglobin [47].  Human skin is 

comprised of several layers starting with a very thin outer layer of the stratum corneum, 

followed by the epidermis and then the underlying dermis as depicted in Figure 22 [48].   

 
 

Figure 22:  Optical Properties of the Skin [48] 
  

Melanin is found both in the top two layers, epidermis and stratum corneum, 

while hemoglobin is contained in the dermis.  Different wavelengths of the 

electromagnetic spectrum are able to penetrate human tissue at different depths.  

Therefore, the reflectance properties of skin are both wavelength and tissue dependent 

[48].  When these two factors are examined together throughout the visible and infrared 

(IR) spectrum, discernible characteristics become evident that can be used to locate, 

segment and characterize faces.   
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Spectral remittance is the amount of light returned by a surface by reflection or 

scattering.  The range of differences in the spectral remittance is depicted as the spectral 

signature of both light and dark skin is shown in Figure 23.  Melanin is the main absorber 

of radiation in the spectrum from 350-1200 nm [48].  As illustrated in Figure 23, 

absorption decreases for longer wavelengths resulting in a higher remittance up until 

1200 nm [48].  Beyond this range skin remittance is unaffected by melanin content [48].   

 
Figure 23:  Variations in Spectral Remittance of Skin  [48]  

 
 

Higher amounts of melanin decrease the remittance and relative slope of the 

spectral signature of human skin.  The presence of hemoglobin can be seen in the 

absorption bands at 410 nm, 540 nm, and 575 nm, represented by the resulting dips in the 

light skin signature in Figure 23 [48].  This effect is masked by the increased absorption 

of the melanin in dark skinned signatures [48].  Storring [49] demonstrated that by 

modeling these reflective characteristics in the visible wavelengths it was possible to 

detect human skin under changing and mixed lighting conditions.  
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Melanin serves to protect humans from harmful ultraviolet radiation of the sun 

and over time a population’s melanin level adjusts to the environment.  Studies have 

shown that melanin levels of indigenous people are strongly correlated to their absolute 

latitude on the earth and the levels of ultraviolet (UV) radiation exposure.  Spectral skin 

signatures are highly dependent on melanin levels and can be extended to determine a 

range of ethnicities.  The mean spectral reflectance for different ethnicities are depicted 

below in Figure 24 [47].    

 
 

 
 

Figure 24:  Differences in Mean Spectral Reflectances [47] 
 

 
Melanin levels may also offer clues as to the gender of a particular individual. In 

populations analyzed by Jablonski [50], it was found that females typically had lighter 

skin pigmentation than males.  This could be biologically attributed to the female’s need 

for increased vitamin D production during pregnancy.  Among homogeneous 

populations, this finding may be able to assist in gender determination.  Jablonski used a 

linear regression of UV radiation measurements worldwide and skin spectrometer 
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readings from numerous indigenous populations to create a predicted shading of skin 

colors around the world [50].  The results are shown in Figure 25 [50]. 

 

 
 

 
Figure 25:  Predicted Spectral Reflectance based on UV Exposure [49] 

 

It is interesting to note that a previously believed limit to face recognition 

performance may be affected by the characteristics of the skin and its reaction to 

environmental factors.  Daugman, the biometric pioneer and computer vision expert from 

Cambridge University, known for creating the iris recognition algorithm used in all 

commercial systems,  noted that an upper bound on the performance of face recognition 

is limited by the birth rate of identical twins [51].  However, at the cutaneous level there 

is an accumulation of empirical environmental data that shows itself in the development 

of nevi and freckles.   

Bataille [52] in her research on risk factors for melanoma for twins, quantified the 

differences between monozygotic and dizygotic twins and noticed that for 

environmentally exposed surfaces, i.e. the face, there is an increasing amount of variance 

with increased sun exposure and age.  These features are evaluated by the medical 
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community through Ultra Violet (UV) illumination of a Wood’s Lamp to accentuate age 

spots and skin abnormalities in order to diagnose skin disorders.  These spots and patterns 

can also serve as supplemental features for matching algorithms if needed.    

Melanin, contained throughout a person’s skin, is present in smaller quantities in 

the lips.  Consequently, the hemoglobin absorption bands mentioned at 540 nm and 575 

nm are more pronounced resulting in more pronounced dips in the remittance curve for 

lip tissue, represented by the green curve in Figure 26 [47].  This characteristic can be 

exploited to locate and track a person’s lips for gesture recognition or incorporated into 

speech recognition applications.   
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Figure 26:  Spectral Signature of Lips (Green Line) Using Visible Wavelengths 
 

Unique spectral characteristics are also present in the human eye or a subject’s 

hair.  The eye, or more specifically the iris, contains the pigment material melanin.  With 

a different biological structure than skin, the remittance properties offer unique features 

that can map to the soft biometric of eye color.  The utility of this type of approach was 

explored in a study by Boyce [53] using multispectral information from near IR (NIR) 

and visual wavelengths (RGB) in an iris recognition application.  In this application the 
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use of multispectral imagery showed the potential to improve segmentation and the 

overall performance of iris recognition systems [53].  Color information was clustered to 

examine various components of the iris and various wavelengths matching scores were 

fused with a simple sum rule for increased accuracy [53]. 

In human hair, melanin is also present in the form of eumelanin (brown-black) 

and phaemelanin (yellow-red) pigments [47].  When large amounts of melanin are 

present the hair appears darker.  For smaller amounts of melanin, the colorless outer skin 

tends to dominate, making the overall appearance of the hair lighter. As individuals age, 

hair tends to lose melanin altogether giving it the white or gray appearance [47].  The 

unique signature of the hair can help locate and segment important portions of the face 

including hairlines, eyebrows, beards and mustaches.  This can also serve to highlight 

inconsistencies as individuals try to alter their appearance with hair extensions, dyes, or 

wigs.  Pavlidis [54] illustrated the ability to detect wigs and toupees as individuals 

attempted to alter their appearance by using upper-NIR wavelengths (1.3 - 1.7 μm).   

The extraction of the soft biometric of hair color can provide useful clues that can 

be used in a facial recognition application.  An example of hair signature compared with 

skin signatures is shown in Figure 27.  Nunez [54] extended this research by 

characterizing a person’s hair color based on its spectral signature as depicted in Figure 

28.  There are some useful characteristics captured in the wavelengths beyond 1200nm, 

where melanin induced remittance becomes less significant, as mentioned earlier in 

Pavlidis’ findings.  
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Figure 27:  NIR Spectral Signature of Hair vs. Skin 
 

 

Figure 28:  Spectral Signatures of Various Hair Colors [54] 
 

The ability to identify hair spectrally can also be applied to the important feature 

of eyebrows.  The eyebrows are central to human recognition abilities as their position 

and movement are often correlated with specific emotions.  With their stark contrast to 

the surrounding skin segments of the face and their location between the flat forehead and 

the eye orbit, the eyebrows maintain a prominent position in the center of the face on a 
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peak between the forehead and eyes.  These characteristics make them an important light 

and shadow resistant feature.   

 The importance of this feature was not overlooked in the previously mentioned 

work of Sinha [4].  His findings show that the ability of humans to recognize faces 

without eyebrows is more negatively affected that images with the eyes removed all 

together [4]. 

 

 
Figure 29:  Face Representations without Eyes and Eyebrows [4] 

 
 

In Figure 29, images of former President Nixon and celebrity Winona Ryder are 

shown without eyebrows, eyes and normally for comparison [4].  The eyebrows are a 

feature that can be critical in either a feature-based identification or a semantic 

application focused on emotion or behavioral recognition.   

 Face images contain an impressive amount of information from soft biometric 

features to spectral signatures.  This data can be utilized in a number of ways to enhance 

the performance of existing face recognition systems.  It has been shown that simple soft 

biometric indicators can improve the performance of other biometric systems.  Several 
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researchers have made the automatic extraction of these features such as gender, age and 

ethnicity from an ordinary image possible.  With the added dimensions of HSI, fiducial 

features of the face can be easily identified, segmented, and categorized.  Combined 

together the mutual information and diversity of these features can provide valuable 

assistance for improving face recognition systems.   

 

Recognition Challenges 

Despite the advancement of face recognition technology, challenges remain in the 

reoccurring areas of occlusion, illumination, pose, expression, and circumvention.  

Progress has been made on all of these fronts, but no single approach or algorithm has 

provided a solution to these problems.  In the following section a range of techniques 

from the literature are discussed as a prelude to implementing them in a hyperspectral 

face recognition system.   

Occlusion 

Although capturing face images is not an intrusive act, it is relatively easy for a 

non-cooperative subject to cover a portion of their face with a scarf, sunglasses or hand in 

an attempt to avoid identification.  Robinson [21] explored the effect that occluded 

images, as well as blurred images, have on face recognition using the eigenface method.  

Vertical and horizontal occlusions of various widths were applied to the face images in a 

manner depicted in Figure 30.   



 
 
  

64 
  
 

 

Figure 30:  Face Images (Undistorted, horizontal, and vertical occlusions) [21] 
 
 

The holistic eigenface method demonstrated a robust performance across many of these 

experiments, but predictably showed a degradation in performance as the size of the 

occlusion increased (1, 10 and 40 pixels).  The results for horizontal and vertical 

obscured images are shown in Figure 31.   

 

  

Figure 31:  Recognition Rates with Increasing Occlusion Size [21] 
 
 

Similarly, experiments with blurring were conducted using increasing level of 

blurring with a two-dimensional boxcar blur of various sizes (2, 20, and 40 pixels).  The 

effect of the blurring is depicted in Figure 32.   
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Figure 32:  Original and Blurred Images [21] 

 

This type of resolution can be common in poor lighting situations or at increased 

distances with common security cameras.  Again, the results displayed decreasing 

performance as the blurring effect was increased (Figure 33) [21].  During testing the 

diminishing returns of performance is evident as the rate of recognition plateaus 

relatively quickly as additional eigenfaces are added 

 

 
 

Figure 33:  Recognition Rates for Blurred Images [21] 
 

 



 
 
  

66 
  
 

An interesting approach used by Robinson [21] was a method of averaging face 

weights for all images of a particular individual.  The common technique used in many 

applications is to project and use all available images in the gallery for matching, 

realizing that most individuals will have several different pictures in the gallery.  The 

averaging technique takes all face weights for a particular individual and averages them 

together to create a face class for that person.  This practice showed increased 

performance rates in testing on the occluded and blurred images.  This approach to create 

a face class could be replicated with images from different wavelengths or from different 

still images taken from a video stream. 

Jenkins [56] also demonstrated increased performance in averaging faces together 

in a test of celebrity images.  In this effort all images of an individual were combined to 

create an average texture model and average shape model.  These models were then 

combined to improve a true positive rate from 54% to 100% for over 400 photographs of 

male celebrities.  Jenkins [56] and Robinson’s [21] results are reinforced by human 

recognition research by Sinha [4] that shows human recognition ability is higher for faces 

that are more familiar to us.  Through these types of averaging processes environmental 

variations can be mitigated while creating more robust facial features.  

 

Illumination 

 Illumination effects are a natural occurring variation that challenges all face 

recognition systems employed in an uncontrolled environment.  These effects are difficult 

to overcome in the visible spectrum and become more complicated in a multispectral or 
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HSI.  Current research, techniques and the advancement in sensor technology offers 

several options to overcome this challenge for greater performance. 

To compensate for illumination within the spatial domain of the image, the 

previously discussed eigenface method can be modified.  The imprecise practice of 

discarding the first few eigenvectors, presumably containing the largest variation of 

uncontrolled lighting, is commonly practiced to gain general improvement in 

performance.  

When operating in the frequency domain of the image, Er [57] used a discrete 

cosine transform (DCT) to reduce the dimensionality of the data.  A similar 

dimensionality reduction can be accomplished across large datasets quickly by using 

DCT and discarding low frequency coefficients.  Er explored the effectiveness of this 

technique by focusing on the coefficients representing the illumination variation in 

images.  In his approach, the first DCT coefficient represents the brightness of an image 

so discarding it or adjusting it to specified value can produce an image that is free of the 

major illumination variations and can be used more effectively for identification (Figure 

34) [57].   

 
Figure 34:  Adjusting Illumination with Discrete Cosine Transform [57] 
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In Figure 34, images (a) and (b) are the same image but taken at different levels of 

brightness.  Images (c) and (d) are the adjusted images of (a) and (b) by using the 

technique of discarding the illumination component using DCT.  This method can also be 

modified for asymmetric lighting effects where one side of the face is well illuminated 

while the other side is submerged in shadows.  By measuring the average brightness for 

each face half and then correcting the imbalance, the image can be adjusted for more 

accurate comparisons.  For more complicated non-uniform illumination variation, 

additional coefficients would have to be discarded or adjusted. 

 
Figure 35:  Global Irradiance Spectra Measured at Different Times [58] 

 
 

Although Pan’s [58] research is discussed later in this document, one of his initial 

investigations into hyperspectral face recognition was in an attempt to overcome 

illumination variations.  A change in setting, location, or even the time of day can affect 

the entire spectrum of environmental illumination as natural lighting effects change 

during the day.  A few samples of environmental lighting signatures are displayed in 
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Figure 35 to illustrate this variation.  This can have a considerable effect on the resulting 

skin signatures, even signatures taken from the exact same tissue of the same person.  

Two examples taken from the forehead of the same person under different environmental 

illumination are displayed in Figure 36, showing that both the amplitude and shape are 

effected making any attempt at matching difficult [58].  In an effort to capture these 

effects, Pan collected  thousands of outdoor illumination spectra to create a low 

dimensional linear model for illumination.  Subsequent recognition was accomplished by 

first projecting face signatures into common illumination subspaces before comparison. 

 
Figure 36:  Spectral Signature of Forehead under Different Illumination [58] 

 
 
 One method that can be used to adjust for lighting conditions is to use a 

spectroradiometer when the image is initially taken.  A spectroradiometer is used to 

measure ambient light conditions and is typically used to measure the spectral properties 

of lighting equipment.  The spectroradiometer measures spectral irradiance (watts/m2/nm) 

at contiguous wavelengths and if these measurements are sampled when the image was 
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taken, then they can be subtracted from the person’s face image to obtain a ‘ground truth’ 

for HSI comparisons [59].  

 

Pose 

 In addition to the eigenview [24] and tied factor analysis [25] mentioned earlier, 

there are other innovative approaches that can be used to compensate for pose variations.  

One notable method is Lowe’s SIFT method [60] [61].  In this method, invariant features 

are found by searching for locations that are identifiable across variable scales, or 

throughout the scale space [61].  Scales in this discussion are different representations of 

the linear dimensions, much like you would see across maps of differing size or scope.  

Fortunately, on maps the scale format used is defined in a easily identifiable legend.  For 

images, this information is not always so obvious.  For that reason, invariant scale space 

features are used that are also robust to image translation and rotation as well as having 

some invariance to illumination changes and obscuration.  A brief review of this method 

follows. 

These interest points (x, y) are identified in the scale function, L(x, y, σ), of the 

image and are located by convolving the image, I(x, y), with a Gaussian function, G(x, y, 

σ) [61].   

 

( , , ) ( , , ) * ( , )L x y G x y I x yσ σ=  

Equation 17:  Scale Function [60] 
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The familiar Gaussian function used in Equation 17 is defined below. 

2 2 2( )/2
2

1( , , )
2

x yG x y e σσ
πσ

− +=  

Equation 18:  Variable Scale Gaussian Function [60] 
 
 

A difference of Gaussian (DoG) filter is developed by using variable scales, k, of a 

constant multiplicative factor [62].  In this process, a blurred version of an image is 

subtracted from the original image removing certain spatial frequencies acting much like 

a band-pass filter to sharpen detailed information or edges in the image. 

 

( , , , ) ( , , ) ( , , )f x y k G x y k G x yσ σ σ= −  

Equation 19:  Difference of Gaussian Filter [62] 
 
The convolution of the Gaussian function with the image is conducted by the difference 

of two nearby scales [61]. 

( , , ) ( ( , , ) ( , , )) * ( , )

               ( , , ) ( , , )

D x y G x y k G x y I x y

L x y k L x y

σ σ σ

σ σ

= −

= −
 

Equation 20:  Difference of Two Nearby Scales [61] 
 

The images obtained are grouped by octave, where an octave is represented by the 

doubling of the σ value.  These images are then subtracted from their adjacent or 

neighboring image to give us DoG images.  Afterwards, the original scaled image is 

down-sampled by a factor of two and then the subtraction process is repeated (Figure 37).   



 
 
  

72 
  
 

 

Figure 37:  Producing the Set of Scaled Images [61] 
 
Each pixel in the DoG images is compared with its immediate neighboring pixels as well 

as its bordering pixels in the DoG image at an adjacent scale.  If the pixel is identified as 

a local maximum or minimum, with respect to the intensity, then it is recognized as a 

candidate key point.  This process is illustrated in Figure 38 . 

 

Figure 38:  Minima and Maxima of the DoG Images [61] 
 

Candidate key points are evaluated and points with low contrast that may be 

susceptible to noise are removed.  In addition, candidate key points that occur along 

edges that are poorly located for matching can also be eliminated.  For the key points that 
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remain, an overall orientation is determined by evaluating the gradient of neighboring 

pixels.  The gradient magnitude, m(x, y), and orientation, θ(x, y), are computed using 

pixel differences as shown in Equation 21. 

 

2 2

-1

( , ) ( ( 1, ) ( 1, )) ( ( , 1) ( , 1))

( , ) tan (( ( , 1) ( , 1)) / ( ( 1, ) ( 1, )))

m x y L x y L x y L x y L x y

x y L x y L x y L x y L x yθ

= + − − + + − −

= + − − + − −

 

Equation 21:  Gradient Magnitude and Orientation Calculation [61] 
 

The gradient of neighboring pixels is measured and used to create an orientation 

histogram where the predominant orientation serves as a reference direction enabling a 

matching capability for rotated images. 

 

Figure 39:  Creating the Keypoint Descriptor [61] 
 

Using a group of orientations, a feature vector or descriptor is assembled that 

describes the local orientation and gradient [61].  This feature vector can be normalized 

to enhance the invariance to illumination effects.  The feature vector is now ready for 
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matching using a variety of nearest neighbor methods.  An illustration of these methods 

as they are applied to face images follows. 

A demonstration of the SIFT method will be applied to a picture of Margaret 

Thatcher, the former Prime Minister of the United Kingdom, and a common example 

used to illustrate the previously discussed Thatcher illusion.  In Figure 40, both the key 

points and associated reference vectors are displayed on the image.   

 

 
 

Figure 40:  Scale Invariant Feature Transform (SIFT) - Key Point Detection 
 

The technique is applied to both an upright an inverted image and the displayed matching 

points are shown in Figure 41.  In Figure 42, a different image, this time using the well 

known politician Secretary Clinton, an example is created to demonstrate the algorithms 

ability to overcome changes in both scaling and rotation as the matches are shown on 

images with varying size and orientation.   
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Figure 41:  SIFT Applied to Upright and Inverted Images 
 
 

 
 

Figure 42:  SIFT Applied to Scaled and Rotated Image 
 
  

There have been a few research efforts that have explored the application of 

Lowe’s SIFT method to face recognition.  Mian [63] used 2D and 3D imagery to correct 

for pose variation.  The interesting use of this SIFT application was the implementation 

in a rejection classifier to reduce the size of large galleries of potential candidates prior to 

matching [63].  Luo applied the SIFT method to face recognition by using a combination 

of both local and global similarity measures of SIFT features [64].  The local features 

derived from a K-mean partitioning of the face’s SIFT features and a global 

representation of the entire face resulted in a method that performed well but still 

struggled when faced with variations in illumination and age [64].  
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Circumvention 

In most face recognition research, the participants, eager to be good test subjects, 

willfully submit to having their faces being photographed.  However, it has been shown 

that when individuals are evasive or deceptive, the face recognition performance quickly 

degrades.  In one demonstration, Ramanathan [65] used an assortment of images with 

various poses and disguises to test the reliability of a recognition application (Figure 43).   

 

Figure 43:  National Geographic Face Images for Circumvention [65][66] 
 

The application used implemented an eigenface algorithm that was combined with 

a half-face matching capability to help overcome illumination variances across the face.  

In the experiment, a trained CIA operative, using both disguises and photographs over 

different time periods of his life, easily confused the face recognition system to the point 

that the performance of the algorithm was no better than flipping a coin.  

Singh [67] was able to improve on this performance with the goal of tackling both 

the challenge of identifying disguised faces but also the often associated difficulty of 

recognition with only a small sample of stored images for an individual.  By using a 2D 

log polar Gabor transform within an artificial neural network architecture his approach 

showed improvements over many leading algorithms by capitalizing on capturing the 

textural features of the face in a manner that is similar to the way the human eye samples 

and processes images [67]. 
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 The challenge of non-cooperative subjects requires the use of additional 

measures to aid face recognition.  One such technique may be by utilizing the unique 

spectral signatures from an individual’s skin, eyes, and hair.  Nunez [68] showed that HSI 

can offer the ability of a live skin test that utilizes the unique reflectance properties of 

both the skin’s melanin and the oxygenated hemoglobin beneath it.  In Figure 44, skin 

detection is demonstrated as the NIR spectral signature from a human face is compared to 

a similarly colored doll face.   

   
 
 

Figure 44:  NIR Skin Detection Compared to Doll’s Face 
 

The ability to use the signatures to detect skin can be used in a manner very 

similar to the Normalized Difference Vegetation Index (NDVI) used in remote sensing 

applications to detect live vegetation.  Based on early work by Nunez [54], [68] a 

Normalized Differential Skin Index (NDSI) can be computed easily through the sum and 

difference of key spectral bands in the same way.  In Nunez’s work, he devised both a 

relative measure of a Normalized Differential Skin Index (NDSI, γi) and a Normalized 

Differential Melanin Index (NDMI, ηi) that proved useful for distinguishing different 

types of materials as well as a descriptive melanin measurement from an individual’s 
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skin.  These calculations are shown below in Equation 22, as  ( )iρ λ  represents the 

reflectance of the ith pixel at wavelength λ [68].   

ˆ ˆ(1080nm) (1580nm)NDSI    
ˆ ˆ(1080nm) (1580nm)

ˆ ˆ(1080nm) (1180nm)NIMI    
ˆ ˆ(1080nm) (1180nm)

i i
i

i i

i i
i

i i

ρ ργ
ρ ρ

ρ ρη
ρ ρ

−
=

+

−
=

+

 

Equation 22:  NDSI and NIMI Calculation [68] 
 

From the simple NDSI calculation, a quick association could be made between 

the NDSI value and various materials that routinely act as confusers when attempting to 

utilize only the color characteristics of human skin for segmentation [68].  The larger 

water content of human skin results in NDSI values that are higher than common 

materials found in the background of an outdoor environment.  A list of these materials 

and relative values are displayed in Table 1 [68].   

Material NDSI 

Fair Skin 0.75 

Darkly Pigmented Skin 0.62 

Doll 0.24 

Cardboard 0.14 

Paper Bag 0.15 

Soil - 0.10 

Red Brick -0.01 

Grass  0.53 

Leaf 0.27 

 
Table 1:  NDSI Values for Various Materials [68] 
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Once human skin is detected and segmented from the HSI, a measurement of the melanin 

level is easily accomplished with the NIMI calculation shown in Equation 22 [68]. 

These additional clues should be used to aid the recognition of non-cooperative 

subjects.  To demonstrate how this capability could be extended, the same simple 

detection algorithm is applied to an image where significant amounts of make-up have 

been applied to the face and the results are shown in Figure 45.  The unusual return, 

where the makeup is applied, highlights that the individual is attempting to conceal 

features or change their appearance.   

 

  
 

Figure 45:  NIR Skin Detection When Make-up is Applied 
 

Extending this capability further with the aid of Independent Component Analysis 

(ICA), the NIR HSI, shown in Figure 46, highlights the underlying veins and hemoglobin 

effects mentioned earlier.  This capability offers complimentary value to recognition 

efforts and detecting spoofing attempts.  Not surprisingly, this technology is starting to 

emerge in the leading 3-D hand geometry systems. 
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Figure 46:  Vein Patterns in Hyperspectral Hand Image 
 

In the medical community, this capability is being actively researched for other 

purposes.  Paquit explored the best combination of NIR wavelengths to locate veins for 

the purpose of automating the surgical insertion of an intravenous catheter [69].  Using 

six different wavelengths, in the range of 740nm to 910nm, he tried to determine the best 

combination of wavelengths using linear discriminant analysis.  

 

   

Figure 47:  Vein Patterns on Hand and Face 
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The next illustration locates the veins on the back of the hand and possibly the 

face, as shown in Figure 47.  Some interesting and perhaps discriminatory effects are also 

observed on the subject’s ear lobe. Due to the unique characteristics of the ear and the 

stability in appearance as we age, the performance of many ear biometric applications 

have shown much promise as summarized by Yan [70] in Table 2. 

 

Table 2:  Ear Recognition Studies [70] 
 

  Yan [70] used a complicated process of using both 2D and 3D imagery data, 

conducting a color-based skin detection, followed by curvature estimation and surface 

curvature segmentation and finally a region classification and ear pit detection was 

necessary to automate the ear detection and recognition system.  Chen [71] was also 

required to employ both modalities of color (2D) and range data (3D) to obtain 

competitive results for an automated ear recognition algorithm.  The appearance of many 

of the distinctive features of the ear shown in the HSI indicates an opportunity to exploit 

the single modality of HSI.  The complementary nature of ear and face recognition 
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becomes evident in most any profile view that challenges a face recognition application 

but often reveals a readily visible image of the ear.  The fusion of the strongest features 

offers the best opportunity for the design of a robust identification system.   

Finally, the correct question in many of these cases may not be who you are, but 

what you are up to.  Pavlidis [72] addressed the later question in his research that used 

mid-IR (3-5 μm) and far-IR (8-12 μm) to sense temperature variations that accompany 

anxiety and fear.  Many of the previously discussed methods along with this novel 

application can be used not just as a means to identify an individual but also as a 

supplemental soft biometric trait that indicates when an individual is trying to avoid 

detection or is exhibiting behavioral characteristics that are not easily concealed. 

 

Hyperspectral Face Recognition 

The visible portion of the electromagnetic spectrum is among the most heavily 

researched areas and a growing number of efforts exploring other segments of the 

electromagnetic spectrum have resulted in increased performance in both tracking and 

recognition testing.  Various experimental efforts exploring the utility of IR face 

recognition has reinforced its utility in locating and tracking faces but the variations in 

thermal signatures over time and under different environmental conditions negatively 

impacts its performance to consistently identify individuals [90]. For this reason, many 

approaches fuse IR and visible images to yield the best overall performance [74].  
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In the NIR spectrum, Pavlidis [54] and Dowdall [91] demonstrated the ability to 

efficiently segment faces, a critical first step in the recognition process.  This method 

used skin reflectance properties in NIR wavelengths that highlight human skin and aid in 

disguise detection.  NIR wavelengths also have a larger penetration depth than visible 

wavelengths and are less dependent on skin temperature than thermal IR [92].  These 

attributes provide a more stable representation of surface features that are less susceptible 

to alteration.   

Previous research using multispectral images identified capabilities that could be 

incorporated into a hierarchal framework for face recognition.  One of these applications 

by Singh [74] looked at image and feature fusion using phase and amplitude information 

of several wavelengths.  In this effort, Singh used Discrete Wavelet Transform to perform 

image level fusion of long-wave IR and visible spectrum and a Support Vector Machine 

(SVM) to choose either the phase or amplitude features that are extracted using a 2D log 

polar Gabor Wavelet.  Although many of these multispectral research efforts offer 

valuable contributions to the field of face recognition, they do not fully exploit the span 

of information contained throughout contiguous wavelengths of a HSI cube. 

 

 Hyperspectral Research 

 Robila [93] expanded face recognition research to 120 wavelengths encompassing 

both the visible and NIR wavelengths, as he explored the utility of using spectral angles 

for comparison.  He was able to distinguish between 8 test subjects using the average of 

18 samples from each person’s face.  Comparisons were not only distinguishable between 
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subjects but also across different regions of the face as depicted in Figure 48.  For 

hyperspectral signature comparisons, Spectral Angle Measurement is a common metric 

used in many hyperspectral software packages. 

 

Figure 48:  Spectral Signature of Various Individuals Faces and Regions [93] 
 

The spectral angle can be calculated for two spectra, x and y, in the following manner. 

 

  ( , ) arccos
) )

Spectral Angle
( (

 ⋅
=   ⋅ ⋅ 

x yx y
x x y y  

 
Equation 23:  Spectral Angle [93] 

 
 

In Figure 49, the three segments shown (blue, red, greeen) compare the spectral 

angle between a test subject and the 8 individuals in the gallery from 3 different pose 

angles (front, 45 degree profile and 90 degree profile).  When the comparitive angles are 

plotted for all subjects, it becomes apparent that subject number 6 has the closest spectral 

angle to the test subject.  Robila chose this efficient technique after an earlier work that 
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evaluated the use of Euclidean distances, spectral correlation angle as well as spectral 

angle [94]. 

 

Figure 49:  Spectral Angle Comparison of Eight Test Subjects [93] 
 

Some of the attractive attributes of the spectral angle measurement is that it is 

always greater than or equal to zero (between zero and π/2) and invariant to scalar 

multiplication.  The defined interval for this metric is useful in setting predefined 

thresholds and the metric’s invariance to scalars allows two spectra under different 

illumination conditions to result in a spectral angle of zero.  This invariance can prove 

useful for analyzing images under different illumination conditions that are uniform in 

nature.  

 Chou [95] used HSI and experimented with segmenting different tissue types in 

the human hand using Euclidean Distance (ED) and Spectral Angle Mapper (SAM).  

These distances are utilized in an Isodata Clustering approach that is an advanced k-

nearest neighborhood method.  Obtaining mixed results, an additional technique was 
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employed to separate fingernail regions from the rest of the image.  A sample variance 

was computed over a small spatial neighborhood using a Round Filter.  The imagery used 

in these initial experiments includes both visible and NIR spectral ranges.  

Pan has utilized hyperspectral spectral signatures of skin to accurately identify 

200 individuals in several related efforts [96], [92], [58], [75].  His methodology 

capitalized on the spectral signatures obtained from different tissue types to create a 

robust recognition capability when faced with pose, expression, and illumination 

variations.  Pan’s methods utilized an initial identification approach that was based solely 

on the Mahalanobis distance between spectral signatures manually extracted from each 

subject’s hair, forehead, cheeks, lips and chin.  Performance results for various 

demographics, poses, and expressions were identified in this research.   

In a subsequent effort, Pan [75] explored the benefit of using a holistic similarity 

distance measurement using eigenfaces at each wavelength.  The Mahalanobis Cosine 

distance was measured at each wavelength and the results summed for an overall metric 

of similarity.  Additional methods including using PCA to sort the bands and compare the 

cumulative Mahalanobis Cosine distances as additional bands were added.  Finally, a 

spectral face representation was created by assembling a face image by incrementally 

selecting each pixel from the following band and then repeating until the entire 2D image 

is created.  This method attempted to preserve both the spatial and spectral properties of 

the hyperspectral face cube.  All methods achieved very successful results with 

cumulative match scores greater than 0.91 for rank 1, which simply means that 91% of 

the first matches made by the algorithm were correct.  
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Since the work of Pan, one additional research effort in HSI has surfaced.  

Elbakary [97] used the K-means clustering algorithm to segment the skin surface in HSI 

and then match like signatures between test subjects using Mahalanobis distance 

measurements.  This effort was useful in demonstrating the potential to automate the 

selection of skin segments and the associated spectral signature for matching. 

Reference Author Approach Image Database Contribution 
 
[96], [92], 
[58], [75] 

 
Pan 

(2003-5) 

 
Distance comparison 
using Mahalanobis 
distance of spectral 
signatures;  PCA and 
Multiband; image 
projection into desired 
illumination space 
 

 
Hyperspectral 
[700-1000nm] 
31 bands 
468x494 

 
University of 
California at 
Irvine 
200 subjects 

 
Demonstrated 
robustness to 
variations in 
illumination, 
expression and 
pose 

 
[97] 

 
Elbakary 
(2007) 

 
K-means clustering and 
Mahalanobis distance 
comparison 

 
Hyperspectral 
[450-1100nm] 
65 bands 
640x480 

 
CMU 
Hyperspectral  
48 Subjects 

 
Automatically 
clustering of  
face tissue by 
spectral angle 

 
[93] 

 
Robila 
(2008) 

 
Spectral Screening for 
the identification of 
tissue types and 
individuals 

 
Hyperspectral 
[400-900nm] 
640x640 

 
Montclair State 
University 
8 subjects 

 
Ability to 
distinguish 
individuals and 
tissue types 
based on 
spectral angle 
 

 
Table 3:  Summary of Hyperspectral Face Recognition Research Efforts 

 

Despite the vast amount of face recognition research already accomplished and 

the growing popularity of HSI for remote sensing applications, there have been only a 

few efforts combining the two technologies.  Table 3 summarizes the hyperspectral face 

recognition research accomplished to date.  These efforts have given us the foundation to 

exploit HSI for face recognition.  From these findings, an automated and robust 
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application can be constructed in a relational hierarchy that that combines proven 

capabilities from the spatial, spectral, and temporal domains, not so different from the 

manner in which human recognition is accomplished. 

 

Fusion  

 Even with the distinctiveness that accompanies every human being, no single 

metric or feature has demonstrated the ability to identify all individuals in both controlled 

and uncontrolled environments, and certainly over large populations.  Therefore, it may 

be due to the infancy of biometric systems or the sensitivity that people have about their 

privacy rights, that many commercially employed systems are typically limited to a 

unimodal application.  Regardless of the biometric chosen, the single mode will contend 

with the challenges of noise in the sensed data, intra-class variations, and inter-class 

similarities [16].  Multi-biometric systems can address some of the challenges facing 

unimodal biometric identification but they come with added computational demands, 

complexity, and costs [73].  Therefore, the design and implementation of a multi-modal 

solution should carefully weigh the cost-benefit of these trade-offs.   

Solutions that incorporate several modalities and multiple sources of information 

are able to increase the population coverage and counter spoofing attempts, all with a 

proven increase in performance [16].  However, with these multimodal methods comes 

the requirement of close proximity to the subject as well as their compliance.  

Unfortunately, the difficulty with identifying a subject is occasionally due to a lack of full 
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cooperation and so the expectation of voluntary participation and immediacy could be 

wishful thinking.   

An alternative to this challenge may be to fuse contextual information in an 

architecture that enhances effectiveness.  Regardless of the eventual solution, there 

remains the task of determining the best combination of diverse and complimentary 

information from different domains.  In order to discover the best fusion strategy, a 

review of common alternatives is necessary.  The basic levels at which biometric fusion 

occur are at the data level, feature extraction level, matching score level and the decision 

level.  For the following discussions, fusion is defined in the following manner.  If, φ is a 

measure of performance, then fusion using the rule r is: 

{ }1 2 1 2( ( , )) max ( ), ( ) ,r I I I Iϕ ϕ ϕ≥  

so that, 

3 1 2( , ) is the fused information.I r I I=  

 

Fusion Strategies 

  At the beginning of the process, data fusion can occur as images taken from 

different wavelengths or sensors are combined using image and signal processing 

techniques [104].  A common example seen in the literature is combining the tracking 

advantages of IR sensor data with the spatial detail of visible imagery to achieve a level 

of performance higher than either of the systems used in isolation.  Illustrating the 

advancement in sensor technology, Varshney [104] was able to combine images from an 
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IR and millimeter wave (MMW) sensors to obtain an image that was able to more 

accurately depict a concealed weapon (see Figure 50). 

 

Figure 50:  Data Fusion Using IR and MMW Images [104] 
 

 

At the feature extraction level, various features are collected from different 

sensors and combined for a higher dimensional feature vector.  A cautionary note by Jain 

[73] notes that not all biometric features are easily combined.  For example, the eigenface 

weightings from a face recognition system and the minutiae traits from a fingerprint are 

not intuitively similar and therefore difficult to merge [73].  When these features are able 

to be combined, they are often characterized by increased dimensionality that makes 

feature reduction techniques necessary in this larger hyperspace.  An example of a 

successful fusion effort at the feature level was the work of Marcel [46], who effectively 

combined a grayscale image and a RGB distribution vector as a skin feature.   
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At the decision level, fusion can be accomplished in a straightforward manner as 

results (accept or reject) are tallied with a simple voting algorithm.  This level of 

integration can be seen as limiting as a preponderance of the information has already 

been discarded and is no longer available for consideration.  The drawbacks of feature 

and decision level fusion have made the relative ease of matching score fusion a popular 

approach [73].   

Fusion at the matching level is most often seen with resulting scores being 

normalized before combining them in simple averaging or ranking techniques.  To 

illustrate how easily one of these techniques can be applied in hyperspectral face 

recognition a recent research example is used.  Pan implemented a simple sum rule to 

combine scores, in this case Mahalanobis Cosine distances, Du,v(w), at each wavelength 

(w) as shown in Equation 24 [36], [75].   

, ( ) w w

w w

wD −
=u v

m n

m n


 

Equation 24:  Mahalanobis Cosine Distance [36][75] 
 
 

The two images (u, v) are used to obtain a distance measurement at each wave 

length (Du,v) and then combined for an overall evaluation of face similarity (Du,v) shown 

below in Equation 25 [75]. 
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Equation 25:  Sum of Mahalanobis Cosine Distances [75] 
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In addition to the options of processing levels at which fusion can be 

implemented, there is a variety of architectures that can be selected.  Biometric systems 

can be combined in an ensemble approach where multiple classifiers act on the same 

problem in a redundant manner [76].  An alternative to the ensemble approach is the 

modular approach, where the overall classification problem is broken into smaller 

subtasks with the final classification dependent on inputs from all modules used [76].  

Both ensemble and modular approaches can be either combined in a serial sequence or 

applied in parallel.  There are many options available when implementing fusion in a 

multimodal biometric system.   

Fusion approaches can range from the simple to the complex, but the intricacy of 

these algorithms is not necessarily an indicator of their effectiveness.  At the feature 

level, a simple if-then-else approach can be applied in a serial sequence to evaluate and 

filter possible identities feature by feature.  This type of approach has been proposed in 

the design of a security screening application where watch list candidates are processed 

and separated from the general public using queuing theory fundamentals to enhance the 

efficiency of screening passengers [77].   

At the matching level there are many options for combining the numerical scores.  

Some of the most intuitive approaches are variations of summing and averaging rules.  

Indovina [78] found in his attempt to combine face and fingerprint scores that a Min-Max 

normalization followed by a simple sum rule out performed commercial off the shelf 

unimodal biometric applications.  Ross [79] likewise found in his research, combining 

face images, fingerprints and hand geometry, that the basic summing rule was the most 

effective among the strategies tested.  Averaging rules, as the name implies, combine all 
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scores as a representative mean, but can be tailored to more sophisticated approaches that 

weigh each individual score based on the relative importance of each attribute.   

Weightings can be determined by the accuracy of the classifier used, by the 

quality of the image, or by predetermined values that minimize overall classification 

error.  These weights can be obtained through classifier training or adaptively adjusted to 

improve performance.  Indovina’s [78] review of weighting and fusion schemes 

mentioned earlier, found that for closed populations the best approach changes based on 

the ability to re-sample the same individuals.  His Quadric-Line-Quadric adaptive 

normalization and user weighting strategies outperformed the sum fusion method as 

repeated sampling and statistics were employed for increased performance. 

The use of a ranking rule is another popular technique for combining matching 

scores.  The Borda Count Method is a common ranking rule where each score is assigned 

a ranking (highest rank to the best match), and then these ranks are summed with the final 

classification going to the overall highest ranking.  Figure 51 depicts this approach as the 

probe subject is matched to template 2 due to its similarity distance score in both the PCA 

and LDA application.  In this example, template 2 achieves the second highest matching 

score in the PCA system and top matching score in the LDA system making it the overall 

selection for a face match.  It should be noted, the conflicting decision that a summing or 

averaging approach would present in this case as template 1 actually offers a lower 

average score. 
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Figure 51:  Borda Count Method 
 
 

When fusion is applied at the decision level, much of the data processing has 

already been accomplished, so the remaining task can be very straightforward.  The 

decision outputs from the biometric systems are routinely combined in a voting rule.  A 

majority-voting rule selects the most frequent class label that appears for a probe.  The 

computational simplicity of these elementary fusion techniques can make them an 

attractive choice.   

 

Theoretical Framework  

To formulate the combined classification system proposed for a contextual face 

recognition system, a derivation from Jain [80] can be used to determine the probability 

of identifying a test subject ( )iω given both a primary biometric feature vector (x) and a 

secondary biometric feature vector (y).  In this research, two separate systems produce 

independent feature vectors, and with the help of Bayes’ rule, the following calculation 

for a final matching probability is derived (Equation 26) [80]. 
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Equation 26:  Probability of Fusing Biometric Features [80] 

 

 Although, this approach may helpful from an application standpoint, it can also be 

constructive in determining the error bounds for proposed fusion rules.  Previous work 

accomplished by Schubert [81] used Boolean label-fusion rules to determine the 

combined ROC curves for these systems.  Wang [82] was able to derive and predict the 

expected performance of simple 2-set combinations of biometric classifiers for various 

score fusion rules using the area under the ROC curve, likelihood ratio and a 

discriminability metric [82]. 

If a majority voting rule is chosen, certain assumptions must be met to ensure a 

successful design and implementation.  Assuming the independence of errors among the 

various classifiers and an equal error probability of p < 0.5, the error of the majority-

voting rule would be monotonically decreasing [83].  If the correct classification is made 

by a system with likelihood (1- p), the chances of seeing exactly k errors among N 

classifiers is calculated using Equation 27. 
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Equation 27:  Probability of k Errors for Majority Fusion Rule 
 
 
The likelihood of the majority rule error shown in Equation 28. 

   



 
 
  

96 
  
 

/2
lim  (1 ) 0

N
k N k

n k N

N
p p

k
−

→∞
>

 
− = 

 
∑  

 
Equation 28:  Likelihood of the Majority Rule Error 

 

 By induction, for either odd or even N, if each classifier gets the right answer 

more than half the time, assuming independence, then as more classifiers are used, the 

likelihood of an error decreases when using majority rule.  The respective error cost for 

the optimum Bayesian fusion of N sensors, or from another perspective N classifiers, is 

derived in [84], [85] and is show in Equation 29.   
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Equation 29:  Error Cost for the Optimum Bayesian Fusion of N Sensors [84][85] 
 
 
The false rejection rate (FRR) and false acceptance rate (FAR) as well as the associated cost 

(CFA) are incorporated into the derivation along with the local sensor decision (ui) and 

global decision (ug).  This result is beneficial given the 
N22 possible fusion rules.    

 

Value of Diverse Classifiers 

 When combining classifiers it is reasonable to assume that there should some 

diversity among them if their combined results are to offer some advantage.   This 

advantage can obtained through the accumulation of independent information with 

different types of error or noise canceling out one another.  Likewise when it comes to 
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classifiers, Kuncheva [86] discussed the importance of diversity among an ensemble of 

classifiers if the collection is to be successful.  This cumulative knowledge is sometimes 

cited as an intuitive advantage in the human decision making of crowds [87].   

 Somewhat surprisingly, the higher performing classifiers may be the ones 

discarded in lieu of more diverse classifiers for better overall performance of an ensemble 

such as AdaBoost [86].  With this in mind, the evaluation and inclusion of diverse 

classifiers can be vital to the overall performance of the ensemble.  The correlation of 

classifier outputs or the evaluation of their entropy can be helpful in determining the right 

combination of classifiers to include in a fusion ensemble [86]. 

 In the course of discussing fusion strategies and entropy, the key concept is using 

the mutual information of classifiers in a way that reduces the uncertainty.  In an effort to 

quickly review the basic tenets of information theory, entropy is a measure of a random 

variable’s uncertainty [88].  Mutual information on the other hand is the amount of 

information that is shared between variables [88].  The reason these two concepts are of 

such interest is because of their relationship and the impending result of maximizing the 

mutual information which is to minimize the probability of classification error. 

 The critical step will be to apply these considerations to HSI in a beneficial fusion 

strategy.  Looking at recent findings from face recognition research starts to give us an 

indication on how this may be done.  Bowyer [89] explored several fusion strategies and 

modality combinations in his efforts at combining grayscale images, IR, and three-

dimensional shape imagery.   

 Bowyer confirmed that increased performance is achieved when different types of 

imagery (multimodal) are combined.  He also investigated whether multiple images of 
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the same type, in this case grayscale, would provide added performance [89].  By 

implementing a weighted score fusion strategy for the multi-sample approach, he was 

able to achieve comparable results to that of a multimodal system.  Ultimately, Bowyer 

surmised that both multi-sample and multimodal approaches would reach a performance 

limit and that in order to achieve higher performance these approaches would have to be 

integrated [89].  This research will attempt to build upon this concept by combining the 

various spectral wavelengths and multiple images for maximum confidence in identifying 

a subject.   
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IV. Research 

In order to develop and test various methodologies and hierarchies, a 

hyperspectral face database needed to be created or acquired.  A few initial image cubes 

were able to be built with the use of local equipment.  These test images were collected 

using two separate cameras, SOC 700 and 720, spanning the frequency ranges of 400-

900nm and 900-1700nm respectively.  The continued use of this equipment to develop a 

full database presented several challenges. 

The first of these obstacles was the ability to combine these images and the 

associated complexity of image registration.  The second was obtaining an available and 

functional laboratory with the appropriate lighting equipment.  Finally, there was the 

anticipated obstacle of receiving research permissions for conducting this study using 

personal images of people’s faces with the related privacy concerns.   

Although not part of this research effort, the privacy concerns of biometric 

systems are very real and should be a significant area of study before fielding any 

operational system.  The reluctance of the general populace to allow these systems to be 

integrated into public life is one of the most important considerations facing the 

implementation of any system.  This sensitivity had a significant impact on the decision 

to not release a previously developed database for government research at any 

classification level, regardless of additional disclosure restrictions and agreements. 
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Image Data  

For this research effort, there are several hyperspectral databases cited in the 

literature that could be used for testing.  The first dataset was collected at the University 

of California at Irvine (UCI).  The UCI Database contains NIR images from 700nm to 

1000nm containing 31 spectral bands and a spatial resolution of 468x494 pixels.  This 

data contains images from 200 subjects comprised of a diverse population of gender, age, 

and ethnicity.  Each individual has seven images to include two front view (with neutral 

expression), another front view with expression, and four images from side orientations 

(45 and 90 degrees from left and right sides).  A sample of this data is taken from one of 

those publications is shown in Figure 52. 

 

 
 

Figure 52:  UCI Database – Face Image with Expressions and Rotation [96] 
 

Unfortunately, despite the numerous publications that were based on this 

government funded project, the UCI authors could not locate the underlying data that this 

research was based on.  Attempting to acquire the data at the source, it was found that 

this work was sponsored by the US Defense Advanced Research Projects Agency 

(DARPA) under the Human Identification Program (HID).  U.S. Government program 

funding was provided both through DARPA’s HID Program and through AFOSR Grant 
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F49620-01-1- 0058 and NIH Grant RR01192 [96].  Despite the funding source and the 

research area supported, DARPA was unwilling to release the data under any 

classification or disclosure restrictions.  Multiple attempts to contact the current project 

manager and supporting contractor were unproductive.  The sensitivity of government 

agencies to acknowledge and facilitate research in the field of biometrics would be a 

reoccurring theme throughout this research effort.   

 

 

Figure 53:  CMU Hyperspectral Database 
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The second dataset for consideration was collected by Carnegie Mellon 

University (CMU) [98] and was graciously provided by the well known computer vision 

researcher Dr. Takeo Kanade.  The CMU Database contains Visible and NIR images 

from 450nm to 1100nm containing 65 spectral bands and a spatial resolution of 640x480 

pixels (Figure 53).  The original dataset contained images from 54 subjects comprised of 

a 4 front images with illumination from 45 degrees left, center, 45 degrees right, and an 

image with combined illumination.  The data acquired with the cooperation of the CMU 

staff was a subset of the original data with as many as 48 subjects. 

Another dataset that is publically available for research is a multispectral database 

made available by the Equinox Corporation [99].  Since this data is not a hyperspectral 

dataset, the ability to sample, test, and incorporate the value of spectral signatures would 

be lost.  This data, also funded through the previously mentioned Human at a Distance 

program, is available online, and is depicted in Figure 54.  These separate images cover 

the following wavelengths, short-wave IR (SWIR, 900-1700nm), medium-wave IR 

(MWIR, 3000-5000nm), and long-wave IR (LWIR, 8000-12000nm).  

 

 

 
Figure 54:  Equinox Multispectral Face Database [99] 
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A multispectral database from the University of Oulu in Finland was also 

obtained as another research option [100].  Designed primarily for the study of color 

image analysis, it contains color face images from 125 people under 16 different camera 

calibrations and types of illumination.  Three skin reflectance spectral signatures (400-

700nm), measured from the cheek and the forehead, are provided for each person.  This 

data is illustrated in Figure 55.   

 

  
 

Figure 55:  Oulu Color Image Database [100] 
 

At the end of this research effort, additional upgrades in sensor equipment have 

provided an impressive capability to capture HSI from 400nm-2500nm with a single 

camera, removing the additional image registration issues.  The new hyperspectral video 

recording equipment also provides a real capability to explore temporal dimension and 

value of video images.  This rapid pace of evolving equipment capability indicates the 

eventual progression and direction of this maturing technology. 
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QUEST Methodology 

Qualia can be defined as a representation of the physical environment or a facet 

included in ones internal representation of the world around them.  It is the part of your 

internal representation that is introspectively unavailable [101].  Rogers [102] refines this 

definition by adding that it is any discernible aspect of the illusory Cartesian theater.  It is 

argued that by combining different qualia into a meta-representation, sensory inputs can 

be integrated into a world model that is adaptable and efficiently functional.   

The Qualia Exploitation of Sensor Technology (QUEST) methodology attempts 

to develop a general-purpose computational intelligence system that captures the 

advantages of qualia-like representations [103].  A guiding principle of QUEST 

highlights the use of qualia that map sensory input to more useful and efficient states.  

The functional requirement for a QUEST system is that it possess the ability to detect, 

distinguish and characterize entities in the environment [103].  In order to build a QUEST 

system for our task it is important to develop and understand the concept of an agent.   

An agent, depicted in Figure 56, takes a subset of stimuli from the environment 

and processes this into information.  An agent has knowledge of other agents and 

transmits selected aspects of its information representation to other agents.  Agents 

transmit stimuli upward in higher levels of abstraction and transmit some information 

downward providing context that can influence lower level agents.  An entity uses a set 

of agents to create an internal representation of its environment.  The internal 

representation is formed through the collective knowledge of the agents.   
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Figure 56:  Agents and Level of Abstraction [102] 
 

 In this research, the relevant attributes are compromised of biometric 

characteristics and contextual information across the electromagnetic spectrum.  Rogers 

[103] states that the concept of context is the subjective representation of an entity as it 

exists in the world, an abstract characterization or general mental concept that helps us 

identify an object.  The combination of detailed fiducial features from the stimulus space 

and higher-level abstracted biometric features create this context.  As Rogers [103] 

reminds us, memory is not just the storage of prior experiences but an iterative and 

constructive process that is utilized in perception, recollection, and imagination.  In the 

human recognition system, the mind stores data not so much as sensory numbers but as 

relative comparisons to prior experiences, that can change over time.  For the purposes of 

developing a face recognition system, the relative comparisons should serve an important 

role in refining the search space and guiding the search process. 

The connections or links in our system will provide the logic and determine the 

effectiveness of context.  There are many choices available to choose from and links can 
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be the connection of internal and external facial features that have proved so important in 

human recognition research.  The links chosen can help incorporate higher levels of 

abstraction such as important soft biometric cues.  The links can be the connection 

between spatial and spectral information.  Spectral information can be used to segment 

facial features such as hair, skin, and eyes and then this information can be transmitted to 

spatial recognition agent or conversely a spatial segmentation approach can supply 

knowledge useful for spectral matching.   

Selected biometric features and the links between them that create the contextual 

backdrop should be continually refined in a reoccurring process that reduces the 

uncertainty in authenticating or identifying a person.  By developing a rational feedback 

loop that iteratively looks at the problem an adaptive behavior can emerge.  The process 

must be efficient to explore the vast amount of sensory data contained in HSI, filter 

relevant aspects to create information and then combine and update this information to 

create knowledge.   

Soft biometrics in this research are not merely labels but instead, vectors for a 

process that generates information and reduces the search space.  Higher-level abstraction 

is a benefit that can help guide classical recognition approaches.  Without this assistance, 

a recognition system could be characterized as autistic without an ability to connect 

important semantic categories.  In order to create a theory of mind, the developed 

methodology may be well served by mimicking the human recognition system that 

incorporates an overt process that enables humans to identify faces and the covert process 

that allows individuals to connect semantic information  for confirmation [10], [11].    
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The intelligent use of biometric cues can enable the use of spatial, spectral, and 

temporal data much the same way the human eye and brain operate interactively to utilize 

stimuli.  We intend to build a hierarchy to enable the fusion of independent systems to 

create an efficient representation of a hyperspectral face image for purposes of 

identification.  One of the goals of this research is to integrate the concept of qualia to 

efficiently exploit sensory data in a method that transitions from general to specific 

characteristics in a hierarchal architecture.  The Qualia Exploitation of Sensor 

Technology (QUEST) methodology applied in this research will attempt to replicate 

contextual and temporal information in an adaptive feedback loop. The face recognition 

problem offers an attractive test bed to investigate and develop evolving QUEST 

concepts that can promote both the field of biometrics and generic ability to detect, 

distinguish, and characterize entities in the environment.  

 

Illustrative Example 

One possible application of a face recognition system is to locate and identify a 

person of interest from a national watch list using a collection of face imagery data, 

hyperspectral in our case.  This can be aided by an associated soft biometric description 

(i.e. male, black hair, light complexion).  A secondary requirement of our system is to 

monitor individuals trying to circumvent detection.   
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Figure 57:  Skin Component for Face Detection (Theoretical) [106] 
 

In this setting, our first task is to detect human skin and subsequently faces in HSI 

(Figure 57).  Using the Normalized Differential Skin Index by Nunez [54], or similar 

approach used by Pavlidis [54], face images can be quickly located and extracted.  

Although the spectral signature of human skin is distinctive from other materials and 

unique among population groups, it may only be useful to narrow our candidate pool, but 

not adequate for a confirmed identification. 
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Figure 58:  Hyperspectral Data Cube Covariance Matrix 

 
  

Using captured face images, an initial investigation of the underlying data and 

covariance matrix (Figure 58) indicates that a large portion of the variance is contained in 

several of the first several principal components.  Discarding the components associated 
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with lighting variance and retaining the remaining principal components and 

reconstructing the image would reveal a stable face representation suitable for a holistic 

matching approach such as eigenface.  Figure 59 shows an example of an image 

portrayed by this reduced data. 

 
 

Figure 59:  First Principal Component of HSI 
 

Understanding of the negative impact that hairstyle changes can have on 

recognition performance, hair segments will be removed in order to process only the face 

portion of the image.  Matching scores based on an average hair signature could be fused 

into the recognition process later.  Based on the initial results of the holistic matching, the 

face space will be tuned to more effectively highlight the unique characteristics possessed 

by our person of interest.  Using insights from Johnston [8] and Valentine [7], a similarity 

measure will define a specified face space where comparable individuals can be closely 

evaluated or alternatively a projected space that places faces of interest in a sparse region 

where delineation among neighboring faces is straightforward. 
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Other principal components or spectral signatures, illustrated in Figure 60, could 

be used to segment the eyes and lips in addition to the hair.  Subfeature approaches such 

as spectral matching, eigeneyes and eigenmouth can be used to match these features to a 

list of candidates.  Appropriate weighting values will be assigned to these subfeature 

scores based on their relative value to recognition performance.  Using findings from the 

study of human recognition, we can expect eye features to be associated with higher 

weights while the mouth would obtain a lower initial weight.  The matching score of our 

subfeature method will have to be fused with holistic scores for maximum effectiveness.   

Additionally, soft biometric traits can guide the candidate filtering to fit the 

description of our person of interest.  The unique spectral properties of human skin and 

hair can be used in conjunction with a spectral angle metric to filter out large parts of the 

gallery.  Additionally, DFFS can be used to selectively choose similar type images 

(among the gallery) based on pose, illumination or some other selected linear subspace, 

similar to the view-based methods discussed earlier from Pentland [24].  

 
Figure 60:  Additional Principal Components and Spectral Signatures   
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 In this illustrative example of contextual hyperspectral face recognition sensory 

information can be collected, processed, and utilized in a manner that aids classifier 

performance and the overall recognition capability.  The overall process incorporates a 

feedback loop that allows progress to continue or alter direction when there is none.  The 

process overview is depicted in Figure 61. 
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Figure 61:  Initial Hyperspectral Face Recognition Process 
 

 

Without the insight that experimental results will eventually provide, the initial 

framework is set up to allow the exploration of opportunities for QUEST concepts for 

hyperspectral face recognition.  This general structure allows contextual benefits to 

influence both the comparison face space and the management of gallery candidates for 

matching.  With this overarching approach, many important questions remain 

unanswered.  How is the comparison face space developed and adjusted?  Is the entire 

gallery of faces used initially?  As the gallery is culled, how is the subset of candidates 
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chosen and adjusted?  How are the scores managed, by distribution and range?  Soft 

descriptions can theoretically guide these decisions but the construction of an application 

requires that these questions have an answer. 

Published research from the cognitive sciences helps us to assemble a common 

understanding of the highly complex process of human recognition.  One of the first 

observations is that face processing is accomplished with such speed that the initial part 

of this task is most probably accomplished through a predictive and direct neural process 

[107].  Low spatial frequency information is extracted and used for initial object 

recognition in a top-down process and high frequency information is added through 

bottom-up feedback streams [108].  Additional memory associations are used to help 

derive future expectations or predictions [108].  This process reoccurs with additional 

information and expectation updates until a level of distinctiveness and perception is 

achieved that allows a face to be identified.   

There is opportunity to connect this cognitive research with the computation 

design using common transformations in both the spatial and frequency domains.  Many 

of these transformations to include: PCA, ICA, the discrete cosine transform and the 

discrete Fourier transform have been used in various face recognition approaches but not 

with HSI.  By controlling the initially retained information with context and managing 

the process by which supplemental information is added, the concepts described in the 

neuroscience literature can be evaluated experimentally. 
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Research Goals 

The purpose of this research can be summarized by the following four goals:   

1) Extend the existing research in the area of Hyperspectral Face Recognition  

2)  Define and explore a framework for contextual based face recognition 

3) Devise a method of generating subjective representations to evoke perception or 

qualia-like solutions 

4) Through this methodology improve the performance, efficiency and robustness 

of classical face recognition methodologies 

Dr. Zhihong Pan has set the foundation for the study of this area with his doctoral 

work at UC Irvine and his publications that followed [96], [92], [75], [58].  Within the 

framework for contextual based face recognition, it is hoped that common weakness of 

face recognition (uniqueness, performance, and circumvention) as well as the reoccurring 

challenges of variation in illumination, pose, and expression are mitigated through this 

architecture.  Finally, the most forward reaching goal is to provide a foothold as a driver 

problem for a general-purpose machine recognition ability described in the QUEST 

Tenets [103].   

Data Exploration 

Among the available data options, only the CMU database provided a true 

hyperspectral database that was comprehensive enough to develop and explore our 

intended areas of research.  The initial exploration of the CMU database confirmed the 

difficulties with this early attempt to capture face images hyperspectrally.  Denes [98] 

noted in his research report that the prototype spectropolarimetric camera used was 



 
 
  

114 
  
 

subject to stray light leaks and optical imperfections.  In summary, he said, “better face 

recognition clearly requires higher definition through a more sensitive, low noise camera 

or through higher levels of illumination.” [98]  This experimental data would provide an 

ideal challenge for our algorithms and fusion strategy development.    

  

Figure 62:  Blue and Green Wavelengths of an Image 
 

The images proved to be every bit as noisy as promised, particularly at 

wavelengths below 600nm containing the important blue and green bands of the visible 

electromagnetic spectrum.  To illustrate this point, sample images in the blue and green 

wavelengths are shown in Figure 62.  The variability of this noise is also prevalent in the 

spectral signatures and is illustrated in Figure 63, as skin signatures for a small sample 

from a subject’s forehead is plotted.  The spectral signatures from the 17x17-pixel sample 

from a relatively uniform portion of the image foreshadow the unpredictability expected 

throughout the database.  The calculated variability is shown on the left side of the figure 

and unfortunately, the greatest variability happens to be present in the visible 

wavelengths of the image.  This image characteristic should have a negative impact on 

any spatial recognition algorithm used on this data. 
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Figure 63:  Variability of 17x17 Pixel Spectral Sample from Forehead  
 

In addition to these instrumentation challenges, there were some additional 

complications introduced by the test subjects during data collection. Two of the more 

common examples are depicted below in Figure 64 and Figure 65.  In the first example 

the test subject’s head, face, mouth and eye movement occurred during the image capture 

as the camera sequentially cycled through the 65 wavelengths.  In the second example, 

the test subject changed appearance by donning sunglasses during the second image 

session.  Eyeglasses are donned by three subjects during the second session that is used 

for our test images.  The movement and susequent changes in appearances and hair styles 

sometimes resulted in a partial face images similar to those expected in an uncontolled 

environment.  No efforts to make registration corrections for the sequential images will 

be made and will have a detrimental impact to the performance of the identification 

system. 
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Figure 64:  Movement of Subject during Image Capture 

 

Figure 65:  Appearance Changes between Training and Test Sets 
 

Preprocessing  

The importance of preprocessing images before testing is significant and the 

amount of effort both manually and computationally is usually not discussed at much 

depth.  Many applications use images accompanied by the manually selected coordinates 

of the eyes that is used for alignment and sizing purposes.  This upfront effort can be time 

consuming and assumes the involvement of human recognition at the onset of the 

process.   
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One such application is the Colorado State University (CSU) Face Recognition 

Evaluation System [36].  This application provides the capability to use a standard set of 

face recognition algorithms including the PCA based approach Eigenfaces, a combined 

approach using PCA and LDA, a Bayesian Intrapersonal/Extrapersonal Classifier, and a 

computationally intensive Elastic Bunch Graph Matching algorithm [36].  This testing 

environment also provides statistical methods for comparing the performance of these 

various algorithms. These algorithms, however useful, can take a long time to run in this 

testing environment with as much as a day for the first 3 algorithms and 5 days for the 

Elastic Bunch Graph Matching algorithm on a 1GHz G4 PowerPC processor [36].  

Before running these algorithms, the images used need to be preprocessed and 

require the exact coordinates of the eyes.  Normally, this procedure is accomplished 

manually and the related coordinate data included with each image.  The overhead 

requirement for this step is rarely included in the discussion of performance.  With this 

information, the grayscale images are ready for several preprocessing steps. 

The first of these steps is converting the 256 possible integer gray levels into 

floating point equivalents [36].  The next step aligns all images based on the manually 

selected eye coordinates in step called geometric normalization [36].  Although not 

discussed in the documentation, this process allows images to be centered, resized and  

rotated based on manually extracted data minimizing many of the challenges encountered 

with scaling and aspect or pose variations.  With all images aligned and sized an elliptical 

mask is used to crop the images to reveal only the face surface from forehead to chin and 

from cheek to cheek [36].  An example is illustrated in Figure 66.  
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Figure 66:  Preprocessed Image Used in the CSU Face Evaluation System [36] 
 

Taking the aligned and cropped image, the next step, called histogram 

equalization, more evenly distributes the contrast levels of the remaining face image.  

Finally pixel normalization is conducted that scales the mean of pixel values to zero and a 

standard deviation of one.  Although not a normal part of algorithm discussions, these 

preprocessing steps play a very important role in standardizing images and have a 

significant effect on the overall performance of the face recognition algorithms. 

The CSU Face Recognition Evaluation System was strongly considered as a 

developmental and testing environment due to its popularity and assortment of 

capabilities and algorithms.  However, the related run times would prevent the real-time 

display of face recognition applications and the existing paradigm of tackling face 

recognition would be a limitation as more complicated hyperspectral images would be 

processed, matched and fused.   

Instead, it was decided to explore the strengths of the MATLAB® environment 

and its high-level language.  The proven computational ability, numerous toolboxes and 

extensive library of existing code offered a hope of processing and exploiting the hidden 
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ability contained within HSI cubes.  Among the many attributes were the attractive 

options of using the image processing and data analysis toolboxes and the accompanied 

visualization capability.  This tool along with the text, Digital Image Processing Using 

MATLAB®, by Gonzalez, Woods, and Eddins, provided an early foundation of 

knowledge for this research effort [112]. 

The hardware requirements for this research were met with a laptop and common 

stand alone desk top.  A majority of the initial testing utilized a Dell XPS lap top with an  

Intel Dual-core T7400 processor (2.16 GHz) with 3 GB RAM and 100GB hard drive.  At 

the end of the research when several algorithms were running simultaneously with the 

results being combined under different fusion schemes a desk top with Quad–core dual 

Intel Xeon X5482 processor (3.20 GHz) with 16 GB RAM and a 1 TB hard drive was 

used for final processing. 

 With the hardware and computational environment in place, it was time to explore 

the CMU database.  Unfortunately, after inspecting the CMU database it became apparent 

that some of the original data was missing, probably due to the change over in researchers 

since the original collection effort several years earlier. A further assessment of the 

available images revealed that only a total of 48 from the original 54 subjects were 

available with only a subset of 36 subjects having the necessary minimum of two images, 

one for the stored gallery and the other as test probe.  The subsequent breakdown for the 

subject numbers with greater than two images available is listed in Table 4.   
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Table 4:  Contents of CMU Database 
 

Although each session contains four light settings, all but the setting using all 

three halogen lamps prove very difficult to work with given the sensitivity of the spectro-

polarimetric camera.  Denes noted the relative lack of sensitivity by stating that only 

about 5-10% of the light was useful and the next generation camera would be capable of 

providing better signal to noise ratio throughout the spectral range of the camera [98].  

Denes also found that the darkened and noisy images were “not sufficient to provide 

adequate discrimination using current face asymmetry algorithms” [98].  A sample of 

these images under the best lighting conditions is shown in Figure 67. 



 
 
  

121 
  
 

 
 

Figure 67:  Grayscale Images before Preprocessing 
 

The initial training set that would form our gallery used the 36 subjects that were 

available for two sessions.  The second session for these 36 subjects were used to form 

the test set or probes that would be used to assess the accuracy of matching algorithms.  

A grayscale representation of these image cubes for the gallery are renumbered in order 

and depicted in Figure 68. 

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

 

Figure 68:  Training Subjects 
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Adopting the same methodology from the CSU evaluation system, the eye 

coordinates of the subjects were manually selected and used to accomplish any geometric 

normalization, followed by cropping the faces with elliptical masks and then performing 

histogram equalization.   Examples of the preprocessed grayscale images are shown in 

Figure 69, with the resulting training set shown in Figure 70. 

 

 
 

Figure 69:  Grayscale Images after Preprocessing 
 

 

 

Figure 70:  Training Images after Preprocessing 
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Spatial Recognition 

After building the preprocessing functions, the image data was ready for initial 

testing.  The first area explored was the spatial domain of the hyperspectral data in the 

form of grayscale face images.  The primary method for image matching was the 

eigenface method devised by Turk and Pentland [21].  This holistic approach was 

developed as an attempt to replicate the human recognition process and also as an 

alternative to many feature based methods that utilized specific attributes but 

unfortunately discarded much of the surrounding image and contextual information.   

 

Whole Image (Every 5 Bands) Ellipse Face (Every 5 Bands)

 

Figure 71:  Initial Eigenface Testing Before Preprocessing 
 

For this step, the proven capability of the eigenface algorithm was used with 

several variations in the preprocessing of the images.  A sample of the recognition 

performance is illustrated in Figure 71 as images from the various frequency bands were 

tested with the eigenface algorithm.  Both cumulative match score (CMS) plots display 

the range of performance using grayscale images based on only a single wavelength of 
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the data.  The CMS plot on the left does indicate additional performance capability 

compared to the plot on the right where an ellipse was used to manually crop each of the 

face images.  This additional performance, using the entire image, may be a reflection of 

the added value of external features mentioned earlier by both the cognitive researchers 

and the portrait artists.   

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

 

 

N=5
N=10
N=20
N=36

 
Figure 72:  Eigenface Testing - Retaining Varying Number of Eigenfaces 

 

The next element of the eigenface testing was determining the value of utilizing 

additional eigenfaces.  In Figure 72, the previously discussed value of retaining additional 

eigenfaces in the algorithm is reinforced, as is the point of diminishing returns.  Utilizing 

only 20 eigenfaces from the gallery achieves the same recognition performance as using 

all 36 eigenfaces.  Additional reductions come at the expense of decreased performance. 

Similarly, the value of using a combination of wavelengths for spatial information 

was explored in a simplistic manner.  Figure 73 illustrates the potential of combining 

images from various wavelengths by simply taking the average of all wavelengths and 

using the mean image for comparison purposes.  The small increase in performance is 
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only an indication as the earlier matching efforts by wavelength showed that some 

wavelengths were more useful than others were.   
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Figure 73:  Eigenface Testing - Single Wavelength vs. Average Image 
 

Many variations were tested, including full images, cropped images, resized 

images using a standard pixel distance between eye coordinates, horizontal leveling of 

images, varying number of retained eigenvalues, mean images obtained by averaging 

throughout the frequencies and images with and without histogram equalization.  

Changes in the overall matching performance were observed but the previous discussed 

limitations of the image data and this recognition approach became evident.  The 

maximum performance was achieved using a combination of manual preprocessing steps 

including the simple alignment of eye coordinates, cropping with elliptical facemask and 

histogram equalization.  The results are shown in Figure 74. 
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Figure 74:  CMS Using Eigenface on Manually Preprocessed Faces 
 

Spectral Recogntion  

After the spatial exploration of the hyperspectral data cubes, the next step was to 

evaluate the matching performance of the data with respect to the spectral dimension.  

Using manual selection, in a similar manner to Pan’s research [96], a sample of 17x17 

pixels were selected for each subject from their forehead, chin, and both cheeks.  A 

smaller 9x9-pixel sample was extracted from each subject’s lips due to size constraints.  

An illustration of a subject’s sample points are shown in Figure 75. 
 

 
 

Figure 75:  Manual Selection of Points for Spectral Matching 
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Following methods used by Robila [93], spectral matching capability was 

evaluated using several variations.  The first and most straightforward was by simply 

using a comparison of the average spectral angle.  The variability of the spectral 

signatures, especially at the sensor wavelength limits, did have an effect on the overall 

performance.  With that in mind, several of the wavelengths at the end of the frequency 

span were iteratively removed until maximum recognition performance was achieved.  

The performance limit was still disappointing but never the less expected given the 

experimental nature of the sensor and resulting data.  The results are expressed in a 

cumulative match score (CMS) plot for each tissue type and are displayed in Figure 76. 

Forehead

L Cheek R Cheek

Lips Chin

  

Figure 76:  Spectral Angle Matching from Selected Tissue types 
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In an attempt to incorporate fusion strategies similar to those used by Pan [92], 

several of the better-known methods were implemented to improve the overall 

recognition capability.  Expecting some correlation among the matching capability, a 

small improvement was realized.  Figure 77 depicts the CMS plots for a combination of 

tissue samples. 

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Match Score

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

Forehead L Cheek R Cheek

Forehead L Cheek R Cheek Lips

Forehead L Cheek R Cheek Lips Chin

Score Fusion (Sum)

F + LC + RC

F + LC + RC + L

F + LC + RC + L + C

 

Figure 77:  Sum Fusion of Spectral Signatures 
 

In an attempt to improve upon these results, the approach from Elbakary [97] was 

replicated with the hope of incorporating the noteworthy performance he obtained with 

the same database.  Elbakary [97] used the K-means clustering algorithm to segment skin 

and then matched subjects based on the Mahalanobis distance measurements.  Through 

iterative testing, it appeared he obtained the best results by designating 4 classes or 

clusters.  An illustration of the results from running his K-means algorithms is shown in 
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Figure 78.  From these designated classes, the selection of the skin class became a little 

vague.   

In Elbakary’s words [97], “The cluster among the face clusters that contains more 

pixels is selected to represent the reference face since more pixels in the cluster implies 

more information in that cluster.”  From this confusing description, it appears that the 

predominate segment is chosen as the skin class for matching.  After inspecting the K-

means cluster results, identified by the black pixels and shown in Figure 78, some 

questions remain.  If the lower left image contained the largest number of pixels, which is 

debatable, there still seems to be a significant number of pixels identified in this cluster 

from the surrounding background.  This raises a suspicion that the accuracy of any type 

of spectral matching would be affected consequently. 

 

Figure 78:  Clusters Shown Separately Using K-means Algorithm [97] 
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The entire methodology and segmentation of the hyperspectral images were 

replicated with the single matlab K-means function.  All image results depicted in 

Elbakary’s work agreed with the segmentation results achieved with the matlab function.  

The results obtained in Figure 78 are identical to those in Figure 79, as all segments are 

color coded and combined in a single image, albiet the image in Elbakary’s work is 

flipped from left to right.  In this single representation, it is evident that the segmentation 

of the skin segment is not as accurate as it should be in theory.  Given the marked 

differences in the spectral signatures between live skin and the inert background of the 

test studio, these results are most probably segmenting on the highest illuminated 

surfaces of the image.  Recall that three 600 watt halogen bulbs were used, and as Denes 

[98] states, the lamp intensities were “at near the upper end of commercial studio 

lighting.”  As such the illumination saturation is probably causing the negative impact on 

image sementation. 

 

Figure 79:  K-means Clustering Results 
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To gain additional insight and explore the utility of this approach further, 

additional K-means runs were attempted steadlily incrementing the number of segments.  

These attempts better segmented the skin from the image background than the previous 

attempts using 4 segments, but there remained the challenge of devising an automatic 

selection of the segments associated with the face.  Additional excursions using samples 

from the original database under less than ideal lighting were also evaluated.  Again, 

regardless of the lighting and numbers of segments used an accurate method of 

identifiying only skin segments or all of the skin segment was not achieved.  The results 

of these tests are shown in Figure 80.   

 

Figure 80:  Additional K-Means Testing and Different Illumination 
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The images were also preprocessed with elliptical masks, exposing only skin 

surfaces, and were again tested to evaluate the utility and accuracy of K-means 

algorithms.  Unfortunately, the potential contribution to more detailed segmentation 

would be limited but still a valuable and contributing element in a fused hierarchy.  

Unable to refine the segmentation aspect of this approach, the focus turned 

towards replicating the performance of the method.  Elbakary cited impresive results 

despite the apparent segmentation accuracy and the challenges of the sensor data 

collected.  These results are shown in Figure 81.  The statement that these results were 

comparable to other algorithms in the literature is true as Pan’s [58] results are displayed 

in the figure that follows (Figure 82).  Pan’s results were achieved with a similar 

Mahalanobis distance comparison but was matched against the manual selection of skin 

pixels from a higher quality database [58].   

 

 

Figure 81:  Elbakary's Published Results [97] 
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Figure 82:  Pan's Published Results Using Spectral Signatures [58] 

 

Surprisingly, Elbakary matched Pan’s level of performance utilizing data that was 

obtained with an inferior sensor and observable inaccuracies in the segmentation results.  

Motivated to match these results, additional adjustments were made to increase the 

effectiveness of the spectral matching approach.  Multiple experiments were used to 

refine or filter the skin samples obtained from the K-means segmentation.  Using filtering 

thresholds based on standard deviation, outlier detection methods, and simply removing 

the noisiest frequency bands at the end of the sensor performance limits were used to 

increase the matching accuracy.  Also, supplementary comparison methods besides 

mahalnobis distance were are utilized to include spectral angle and gradient matching.  

Although some additional performance gains were achieved, the overall levels hoped for 

were never replicated.  

On the otherhand, the by product of these efforts was a better understanding of the 

performance limits and computational cost of utilizing these methods. Several of the 

resulting CMS plots are illustrated in Figure 83.  The first plot (top left) displays the intial 
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performance obtained using the Mahalanobis distance comparions Elbakary employed  

followed by the addition of outlier filtering (top right) using the blocked adaptive 

computationally efficient outlier nominator (BACON) algorithm from Billor [113].  The 

bottom two plots reflect an effort to conserve computational effort by using the 

straightforward spectral angle matching employed by Robila [93].  Even with the 

removal of select wavelengths near the bounds of the camera’s capability, the overall 

improvement failed to match previously documented recognition capability. 
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Figure 83:  K-means and Spectral Matching Testing 
 

These efforts helped evaluate various methods that could be implemented in both 

locating skin segments and the subsequent matching strategies.  In an ideal world, we 
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would like the best performing classifier possible, but when combining classifiers in an 

ensemble the diversity of these approaches can prove to be a benficial ally.  Kuncheva 

[86] states that “even weakening the individual classifiers for the sake of better diversity 

appears to be an excellent ensemble building strategy.”  This is possible only if the 

classifiers make different types of errors that are complimentary.  This diversity can 

measured in many ways as Kuncheva [86] points out with relationship measures of 

simple correlation, Q-statistic, interrater aagreement, pairwise (disagreement and double 

fault measures) and non-pairwise measures (entropy and Kohav-Wolpert Variance).  

With these evaluation techniques the design of any ensemble can be carefully adjusted 

for diversity and ultimately maximum performance.  

 Although the results were not replicable, the approach still proved to be a useful 

method and reinforced an ability to identify individuals simply by the spectral signature 

of their skin, reinforcing the findings of Robila and Pan.  This spectral testing was also 

beneficial in indentifying some weaknesses of the published approaches and offered 

some clues for improving and integrating this capability with other methods. 

 

Interest Point Recognition 

The next area of exploration was testing Lowe’s SIFT method which exploits 

invariant features for object identification [60].  SIFT extracts these features or key 

interest points using a Difference of Gaussians function.  The local minimum and 

maximum of this function are used to create a feature vectors that describes the 

orientation and gradient based on neighboring pixels.  These features are shown to be 
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invariant to image scaling, translation and rotation.  These interest points and matches are 

shown for other face images under normal conditions, rotation, and scaling in Figure 84.  

For our initial test subject, SIFT proved just as capable of identifying faces as it did for 

object recognition, even when an artificial rotation was incorporated into the face image.   

 

 
 

Figure 84:  Application of SIFT to Determine Interest Points and Matches  
 
 

Despite the promise of this application, the implementation of Lowe’s executable 

code proved to be the most impressive performing algorithm but also the most 

computationally intensive.  Several excursions using the SIFT algorithm were made with 

incremental distance thresholds for the variable distRatio, which is the ratio of Euclidean 

distances between the nearest and the second nearest neighbor.  The results, shown in 

Figure 85, illustrate the effectiveness of the algorithm.   
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Figure 85:  SIFT Experimental Results with Varying Distance Thresholds 
 

 

In general, there was minimal impact of this variable as the same subgroup of four 

subjects proved to be difficult to match.  These subjects and their images from the 

training and test data sets are shown in Figure 86.  By inspection, it appears that the 

squinting and hair coverage, for the first subject, and addition of glasses, for the last three 

subjects, causes trouble for the SIFT algorithm which is focused on matching the internal 

features of the face.  Recalling the results from cognitive research, it is the combination 

of both internal and external features that provides that provided the best performance 

when it came to human recognition capability.  Extending this lesson to our growing suite 

of recognition algorithms, perhaps the combination of the holistic eigenface algorithm 

and the complimentary interest point algorithm would mimic this approach and 

capability. 
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Figure 86:  SIFT Recognition Errors 
 

As mentioned earlier, the SIFT algorithm came with a computational drawback.  

Although much of the copyrighted code (available free of charge to academic research 

efforts) comes in excutable format, the processing time to run grayscale images for a data 

set of only 36 subjects could exceed an hour on our computer laptop.  To effectively 

employ this capability, a reduction in processing time would become nessary.  Insight on 

how to accomplish this was provided by looking at earlier results compared to those after 

data reduction efforts that would occur as a result of the preprocessing images.  Using the 

initial images it was not uncommon to experience run times in excess of an hour.   

However, by discarding a significant amount of the irrelevant data and reducing 

the size if the input images a considerable amount of processing time would be saved and 

in this case performance would increase.  As an example, the initial 480x640 pixel image 
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required 68 minutes to process the entire database.  When a simple square template was 

placed on these images, reducing the effective size to 251x251 pixels, the processing time 

was cut in third to 21 minutes.  The fortunate byproduct of this reduction in image size 

was not only processing time but also an increase in recognition performance. 

 

Published Algorithm Comparison  

After testing some algorithms on the spatial and spectral domain of the HSI, the 

next logical step was to integrate the two domains into one approach.  This is not entirely 

a novel approach, as Pan implemented a clever approach called a spectral face in an 

earlier research effort [75].  In this effort a face representation was created by assembling 

an image by incrementally selecting each subsequent pixel from the following band and 

repeating throughout the image.  Replicating this effort to capture the spectral and spatial 

information into one image, the CMU database was transformed into a similar format and 

is shown in Figure 87, next to a comparable image from the CAL database used in Pan’s 

research.   

 

Figure 87:  Spectral Face Implementation for CAL and CMU Databases 
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Although the method and images are similar, the results were unfortunately not.  

The continued trend of below average performance for all tested algorithms simply 

confirmed the troulblesome nature of the CMU data.  This is only one perspective 

however.  An operational employment of a recogntion system will seldom experience the 

pristine conditions offered by the AT&T [119] and CAL [96] databases as variances in 

pose, lighting and sensors frequently provide challenging real world data.  The results of 

replicating some of the leading algorithms has fallen short of published results but the 

value of these approaches is not lost.  A comparison of the overall performance is 

depicted in Figure 88. 

 

Figure 88:  Testing Results of Select Algorithms on CMU Data 
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Findings from this initial round of testing suggested that a fusion framework 

would need to combine complimentary aspects of these algorithms to provide the 

required performance capability regardless of data quality or environmental setting.  

Taking into account the processing time of some of the algorithms, a method to 

incorporate data reduction wherever possible should be devised to reduce the overall 

computational time.  The next section will describe both the efforts to improve the 

individual algorithms and the attempts to integrate them into a hierarchy for a robust face 

recognition system. 

 

Algorithm Enhancements 

 
In early testing the generally accepted preprocessing practices were used, but as 

the computational capability increased, it seemed unacceptable to accept these artificial 

methods that would restrain any operational implementation of a system.  The first step to 

adjust this process was incorporating an automatic segmentation of the skin and hair.  As 

shown earlier, with the testing of Elbakary’s K-means clustering, the identification of 

skin surface was possible.  The use of this approach did not appear to be easily adjusted 

for an automated approach because of the problems with accuracy and computational 

speed. 

Nunez’s [55], [68] research however provided a method with NDSI to identify 

skin surfaces using only two wavelengths from hyperspectral images.  The technique and 

reduction offered an attractive option to a more involved clustering method.  

Unfortunately, NDSI looked for two key wavelengths 1080nm and 1580nm in order to 
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calculate the index.  The CMU data only spanned the spectral range from 450nm to 

1090nm.  So only one of the key wavelengths was contained in the data and the one 

wavelength included was located at the performance boundary of the Spectro-

Polarimetric camera.  Faced with this difficulty, an alternative to this proven method was 

explored to demonstrate the utility of this approach. 

With the advice from Nunez, a less effective, but suitable, alternative was devised 

that used a combination of indexes designed to highlight the unique characteristics of the 

spectral signature of human skin and eliminate common confusers.  Keep in mind that 

this work around was meant to mimic the proven method devised by Nunez’s research 

and would be applicable with a more current hyperspectral database.   
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Equation 30:  NDSI Substitute Approach 
 

By examining the available wavelengths in the data as well as the quality of the 

information, an alternative approach was designed to sum relevant wavelengths and 

create indexes similar to NDSI that exploited the spectral characteristics of skin.  Seen 
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below in Equation 30 is the NDSI calculation and the alternative indices.  Below the 

NDSI equation are four indices used to highlight the increase in reflectivity in the NIR 

wavelengths versus blue wavelengths ( )Viγ , highlighting the characteristic water 

absorption dip at 980nm ( , )Wi Xiγ γ  and a final check to remove potential plant material 

that can act as a confuser ( )Yiγ . 

By combining these indices that indicate the possibility of skin, when the value is 

greater than one, the skin segment can be identified rather efficiently compared to K-

means.  The most effective implementation of this approach relied on ( )Xiγ  and ( )Yiγ  

indicators to identify skin potential pixels.  All pixels in the hyperspectral image cube 

that fell near the calculated average of the potential skin pixels were deemed a skin 

surface.  Additional image processing methods were employed to filter noisy pixels.  

Among these included the matlab function, graythresh that employs the Otsu method that 

chooses the threshold to minimize the intraclass variance of the black and white pixels 

and the matlab function, bwareaopen to remove small objects (pixels).  

A similar approach was used for the identification of hair segments in the image.  

This time using a NDVI calculation (Equation 31) and then fine-tuning the selected 

segment using Mahalanobis distance comparison for only the red (650nm), green 

(510nm), blue (475nm) and NIR (1000nm) wavelengths the hair segments, including 

facial hair, was obtained. 

ˆ ˆ(1000nm) (650nm)NDVI    
ˆ ˆ(1000nm) (650nm)

i i
i

i i

ρ ργ
ρ ρ

−
=

+  

Equation 31:  NDVI Calculation 
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These procedures are not as straightforward as initially intended but with the appropriate 

wavelengths, the approach can be simplified.  The results of these two segmentation steps 

for skin and hair are illustrated in Figure 89.  The implication of this capability would 

soon be exploited in subsequent steps. 

 
Figure 89:  Contextual Layers of Skin and Hair 

 

With the unique ability to segment the skin and hair segments of the image, it was 

uncomplicated to include a centroid calculation to accomplish the task of automatically 

centering images for identification.  The additional steps that are routinely accomplished 

during preprocessing could now be enabled automatically.  These adjustments include the 

centering of all face images, leveling in the case of unintended rotation of the face, 

resizing the image for a consistent scale across individuals or the population.  Once this is 

accomplished, the removal of background clutter is accomplished by the application of an 

elliptical mask.  Unfortunately, when this is accomplished some important information is 

removed from the image including the relative shape of the head and a good portion of 
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the hair on top of the head.  This same approach was initially attempted but as our 

processing capability matured we found this step crude in its application.   

Additionally, the requirement to provide two eye coordinates for size adjustment 

proved unnecessary as other measurements could be extracted from portioned skin and 

hair segments.  If desired, standard image sizes could be automatically obtained by 

scaling measurements from the segmented face such as the major axis, minor axis and an 

eccentricity.  Not only were these measurements helpful in automating a previously 

laborious manual process, but now provided additional descriptive feature that could be 

incorporated into the recognition system.  The centroid location is calculated and 

depicted in Figure 90. 

 

 

Figure 90:  Using Skin Detection to Determine Centroid 
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With the detailed segmentation, the face and hair segments could be easily 

extracted from any image while keeping valuable external cues such as shape and 

hairstyle that would be used later.  Finally, these cropped images are next passed through 

a histogram equalization adjustment to utilize the full range of grayscale intensities and to 

bring out some of the less noticeable features. 

 

Figure 91:  Edge Detection Efforts 
 

With the ability to segment and collect features related to the external aspects of 

the face the next endeavor was to capture more detailed information contained in the high 

frequency data of the face.  Additional efforts to accurately collect this data included 

several proven edge detection methods included in the matlab image processing toolbox 

such as the Sobel, Prewitt, Roberts, Laplacian of Gaussian and Canny methods. The most 

effective of these methods was the Canny function that locates edges by finding the local 
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maxima of gradients in the image. This particular method worked best because it employs 

two thresholds, one for strong edges and the other for weak edges.  Weak edges are only 

included if they are in proximity to strong edges making the method very useful in noisy 

data.  The results of these methods are shown in Figure 91.  It was hoped that these 

features would provide a useful layer of contextual information, since both low and high 

frequency information make up two important components of two-dimensional images.  

Unfortunately, matching results incorporating this information into a composite image, 

shown in Figure 92, was discouraging and prompted further exploration using other 

approaches that would add measurable value to our fusion strategy. 

 

Figure 92:  Incorporation of Edge Information for Recognition 
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In Pan’s research, he showed the value of adding distances obtained as each 

principal component of a hyperspectral image cube was matched with other images.  

Additional information was observable in each of these components and at the same time 

the span of data was efficiently reduced as the many wavelengths could be reduced to 

several components that contained a majority of the information contained in the data.  

Investigation into this method for our data was attractive for the same reasons.  

Unfortunately, once the results were obtained, the reoccurring reminder of quality issues 

for the CMU data was evident.   

 

Figure 93:  First Five Principal Components: CMU Data (Top) and CAL Data (Bottom) 
 

Only a glimpse of the principal components of the CMU and CAL data is required 

to see the difference between the data sets.  Recall that the CAL data spans only a 

spectrum subset (700nm–1000nm) of the CMU data (450nm–1100nm) with about half 

the number of bands (31 versus 65).  Despite this apparent advantage, the evaluation of 

the principal components displays an inferior set of information.  When viewing the 

CMU components only a few images appear to have visible detail where the CAL data 
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displays unique and complimentary detail (Figure 93).  It is no surprise, that when Pan 

[75] utilizes a Mahalanobis Cosine distance comparison to match sequential principal 

components, the additive scores provide improved accuracy that can be incorporated into 

his recognition testing.  

For spectral signature matching, the addition of outlier detection was investigated 

using the blocked BACON algorithm [113].  Smetek et al. [121] conducted tests on 

multiple multivariate outlier detection methods on hyperspectral images and found that 

the BACON algorithm was advantageous because of its computation speed as well as its 

low number of false alarms.  Initially, it was hoped that this ability to detect outlying 

spectral signatures would enable us to identify unique skin features such as blemishes, 

moles, or freckles that are caused by anomalies in the epidermis.  Unfortunately, despite 

the theoretical promise of this approach, experimental testing of this capability was 

unsuccessful, perhaps in part because of the data resolution and quality issues discussed 

previously.  Using this insight, we chose the BACON algorithm amongst several 

available to look for improvement in refining skin and hair samples and ultimately 

performance.  A quick overview of Billor’s outlier detection method follows. 

Most statistical methods utilized on multivariate data assume homogeneous data 

and rely on robust investigative methods to relax this assumption.  This assumption is 

complicated by the fact that real data is routinely comprised of imperfect, partial, and 

missing information.  Unfortunately, there are consequences of this direct approach, as 

discrepancies or outliers impact analysis through covariance distortion and breakdown.  

Surprisingly, these effects can occur with as little as the influence of one outlier and with 

the methods and data being used in this research, outliers were very likely. 
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One of the first challenges in developing an outlier detection method is creating a 

metric that will not be contaminated by the very inhomogeneities that are hidden in the 

data.  Detection algorithms often abandon optimality conditions and work through an 

iterative process to locate outlier candidates.  A result of this iterative process is an 

unattractive algorithm due to its computational expense.  This expense quickly escalates 

with increasing sample size to the point that sophisticated approaches become infeasible 

on large databases.  Certainly, for this application, this was a real concern. 

Even effective and efficient detection methods face pitfalls that must be avoided 

during the investigative process.  The first effect is known as masking and occurs when 

covariance inflation appears due to the effect of strong outliers that “mask” the presence 

of outliers [121].  Examples of this are ellipsoids, defined by a distance threshold that 

grow to include outliers in the dataset.  Many detection methods can also be influenced 

by an effect known as swamping.  The swamping effect denotes an increase in an outlier 

detector’s false alarm rate that can occur when the covariance ellipsoid is either shifted or 

rotated so that “good” observations no longer lie within the threshold ellipsoid or within a 

designated boundary [121]. 

To better understand and discuss the detection algorithm it is necessary to review 

some basic terminology and characteristics.  The algorithm is applied to datasets of  n 

observations, p variables, and a number of outliers equal or less than half the number of 

observations (k < n/2).  A desired characteristic of this algorithm is the ability to function 

even when data is highly contaminated, again a high potential given the observations in 

earlier data exploration.  This attribute is referred to as a high breakdown point and is 

better described as the smallest portion of the dataset that can be modified without 
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making the estimator unreliable [113].  A second desired characteristic for a detection 

algorithm is to be affine equivariant.  This means that the identification of an outlier is 

not dependent on the location, scale, or orientation of the data being examined.  In 

mathematical terms, an estimator, T, is affine equivariant if and only if, T(XA + b) = 

T(X)A + b, for any vector b and nonsingular matrix A [113].  

The most rudimentary detection approach would be to check all possible subsets 

of the data (size k = 1,…,n/2) and determine whether a given subset is outlying relative to 

the remaining observations in the data.  Although thorough, this approach becomes 

computationally impractical except on small datasets.  An alternative method involves 

forming a clean subset of the data and then testing the remaining points or subsets.  

Computationally efficiency can be accomplished if groups of data, instead of single 

points, are allowed to enter the clean subset during subsequent searches of the data.  One 

example of an alternative approach is known as the Minimum Volume Ellipsoid (MVE) 

method.  In this approach an ellipsoid of minimum volume is defined that contains at 

least a “half-sample” (h = [(n + p+ 1)/2]) of observations [121].  Another commonly used 

method is the Minimum Covariance Determinant (MCD).  In this method, a subset of h 

observations is identified whose covariance matrix has the minimum determinant [121].  

Despite the effectiveness of these approaches, they come at the expense of computational 

cost.  

The BACON algorithm provides an iterative, yet efficient, approach to nominate 

potential outliers in a dataset [113].  In testing the BACON algorithm is able to evaluate 

and nominate outliers in less than five passes through the data.  This approach starts by 

forming a basic subset (Xb) of m observations free from outliers.  In this case m = cp, 
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where c is a small scalar (typically 4 or 5 based simulation trials), p variables.  Xb can be 

determined by one of two methods.  Version 1 builds the clean subset with the m 

observations having the smallest Mahalanobis distance.  The Mahalanobis distance is 

calculated as shown below with x  and S representing the mean and covariance matrix of 

the n observations present in the data. 

 

1( , ) ( ) ( )      1,...,T
i i id x S x x S x x i n−= − − =  

Equation 32:  Mahalanobis Distance [113] 
 

The approach using the Mahalanobis distance is attractive because it is an affine 

equivariant approach that offers low computational cost.  The drawback of this approach 

is that it possesses a lower breakdown point (20%) than may be desired [113]. 

The second method of forming an initial clean subset employs a calculation of 

median distances, where m is a vector containing the coordinate medians ( ix m− ). 

In this case, Xb includes m observations with the smallest distances from the medians.  

The median distance method offers us a more robust starting subset and a resulting higher 

breakdown point (40%) compared to the Mahalanobis distance method.  The weakness of 

this approach is that it is not affine equivariant.  Once this initial basic subset is chosen 

we can proceed with the BACON algorithm that is summarized next. 

 

BACON Algorithm for Multivariate Data [113] 

1. Select an initial basic subset of observations using Version1 or Version2. 
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2. Compute discrepancies using Mahalanobis distance method using xb and Sb which 

are the mean and covariance of the clean initial basic subset.  The formula is 

shown below. 

1( , ) ( ) ( )      1,...,T
i b b i b b i bd x S x x S x x i n−= − − =  

Equation 33:  Mahalanobis Distance of Basic Subset [113] 
 

3. Set new basic subset to all points with discrepancy less than , /npr p nc αχ where 2
,p αχ  

is the 1 α−  percentile of the chi-square distribution with p degrees of freedom, r 

is the size of the current basic subset, and cnpr is a correction factor shown below.  

chr is a variance inflation factor when r is much smaller than h.  
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Equation 34:  Formulation of Correction Factor [113] 
 
 

4. Stopping Rule – Iterate Steps 2 and 3 until the size of the basic subset no longer 

changes.  The observations excluded by the final basic subset as are offered as 

outlier candidates. 

 

With the ability to iteratively add groups of clean observations, an efficiency is 

gained that allows this method to be applied to datasets as large as one hundred thousand 
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observations.  The improved forward selection method saves computational costs by 

reducing the number of covariance matrices computed and inverted.   

The application of the BACON algorithm proved to be more effective when it 

came to detecting outlying hair samples.  Irregularities were observed in the spectral 

signatures extracted from the hair perhaps due to varying thickness, location, hair 

treatments, or just the detection method.  A visual depiction of these spectral signatures is 

shown in Figure 94 before and after outlier detection and removal.  

 

 

Figure 94:  Application of BACON Outlier Detection for Hair Signatures 
 

 

Despite the apparent success of detecting and removing outlying pixels the overall 

improvement in matching capability was modest.  In Figure 95, the CMS of using 

Mahalanobis distance is shown before outlier detection and after outlier removal.  The 

shift in performance is positive but does not fulfill the promise hoped for.  Given these 

results, outlier detection methods would only provide a fine-tuning of tissue detection and 
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matching capability but would not provide the needed improvement necessary for a 

solitary solution for identification.   

 

Figure 95:  Performance Impact of Applying Outlier Identification 
 

Remembering some of the earlier successful application of NNs for face 

recogntion such as Pan [26] and Er [27], we hoped to apply the same performance ability 

to the challenging task of providing insight to the limited success of our spectral signature 

matching attempts.  The earlier testing results indicate that this indicator could serve as a 

soft biometric cue rather than a tool for identification.  This capability could 

automatically identify skin types, much the same way Jain [38] did with gender, height, 

weight, ethnicity, skin, hair, and eye color in his application of soft biometric data to a 

fingerprint matching system.   

In Jain’s research these various soft biometric indicators were shown to improve 

recogntion and the performance increase achieved is displayed by his results shown in 

Figure 96.  Although this research used database information as the soft biometric input, 

Jain hoped that in future efforts he would employ a method to automatically extract these 
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same soft biometric features [38].  Our short term goal is to see if Jain’s goal could be 

realized through this research. 

 

Figure 96:  Improvement in Biometric System Using Soft Biometrics [38] 

 

Since the spectral signatures of the skin did not produce the promised 

performance to accurately identify individuals, perhaps another use that would prove 

beneficial to the overall recogntion effort.  What if spectral signatures could simply be 

used to extract a characterization or soft biometric typically used in a personal 

description?  The investigation began with the selection a probabilistic NN (PNN) to 

explore whether pigment types could be consistently characterized.  A  PNN was selected 

because of its straightforward application and its ability to generalize with a small data 

sample. 
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Figure 97:  Spectral Angle Distances 
 

A simple inspection of the average spectral angles between subjects indicated that 

a subset of the group (subjects 13, 14, 15, and 16) had spectral signatures furthest from 

the other subjects and would be logical candidates for the development of a simple 

descriptor.  The goal of this experiment was to take all odd numbered subjects and the 

associated target matrix identifying the subjects of interest, 13 and 15, build a NN that 

could classify this type of skin based on the spectral signature.  After building and 

simulating the PNN in matlab, it was capable of classifying the nearest similar skin 

signatures, subjects 14 and 16, from the even numbered subjects.  This focus group was 

the most easily designated from the entire gallery as seen earlier by their spectral angle 

measurements but application to other groups was now feasible.  Using the following 

procedure, the expansion of this application to hair color using the spectral signature is 

direct but there are also other ways this proven methodology could be applied to extract 

soft biometrics . 
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Many of the necessary features obtained with the segmented portions of the 

hyperspectral face image provide useful descriptive elements of an individual.  The 

segmentation of skin, and the resulting collection of face measurements, presents features 

that easily lend themselves to a characterization of a human face such as large, skinny, or 

wide, and with a measure of eccentricity an indication of an odd-looking face.  Now, in a 

similar manner to the way Jain wanted to inject soft biometrics, size, hair, and ethnicity 

can be extracted automatically and available for incorporation into a recognition system.  

This automated use of spatial and spectral features can leverage the value and speed of a 

PNN to classify these various features into descriptive features.   

The data exploration effort provided an understanding of the quality of the CMU 

database.  Subsequent development and testing of leading algorithms illustrated the 

challenges of applying each method independently.  Even after further refinement, 

algorithms focused on both the spatial and spectral dimensions of the data did not provide 

the necessary performance.  In order to achieve higher levels of accuracy and speed a 

more sophisticated method had to be devised.  Common fusion approaches offered some 

hope but an adaptable and scalable architecture would be necessary if this academic 

effort were ever to lend itself to an operational implementation for hyperspectral face 

recognition. 

 

Hierarchical Architecture 
 

From the field of automatic target recognition, Ando provides a useful hierarchy 

for processing the hyperspectral face images [109].  At the lowest level, processing 
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includes smoothing and segmenting the image.  During mid-level processing, cues such 

as shading, texture, reflectance, and illumination are extracted.  Lastly, high level 

processing integrates invariant information across different viewpoints for final 

identification.   

Varshney [104] describes the fusion model used in the United States military 

community, established by the Joint Directors of Laboratories Data Fusion Working 

Group, shown in Figure 98.  This framework allows a standardized understanding and 

discussion of data fusion issues.  Starting with the first two stages, incoming data from 

sensors (information sources) is screened and allocated (source preprocessing) based on 

priority and throughput limitations [104].  The three levels of processing progress from 

locating and tracking entities, to assessing relationships between objects, and finally 

making inferences about the current situation [104].   

 

Figure 98:  Joint Directors of Laboratories Data Fusion Model [104] 
 

Process refinement is a meta-process that monitors performance and makes 

recommendations for improvements [104].  Database management is concerned with 
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managing the retrieval of relevant data and the associated requests for related information 

[104].  Finally, the human computer interface or human element is positioned in the 

decision loop to monitor progress and insure overall reliability of the data fusion system. 

Colonel Charles Sadowski (USAF, Retired) is an automatic target recognition 

expert and research sponsor from Headquarters Air Combat Command, Directorate of 

Requirements.  Colonel Sadowski has worked of many targeting applications for the U.S. 

Air Force and offered additional advice for constructing a robust hierarchy that would 

improve upon the weaknesses of current target recognition applications.  Colonel 

Sadowski suggested a strategy that starts with general descriptor classes and then 

incorporates select details as needed, rather than current approaches of training classifiers 

based on specific and detailed features and then struggling to generalize them upward. 

Pulitzer Prize winner, Douglas Hofstadter [111] proposed a similar procedure 

building upon established classes or categories.  From his book “Godel, Escher and 

Bach” [111], Hofstadter provided an example, that follows, of an approach that 

continually added context to an entity, creating an instantiation of the object that is very 

different from its original form.  First, imagine a publication, and then add enough print 

until it becomes apparent that it is a newspaper, followed the addition of a unique 

typescript, and title that morphs the entity into the well-known San Francisco Chronicle.  

With the inclusion of temporal data, the paper becomes the May 18 edition of the 

Chronicle.  Adding relational links, the Chronicle becomes my personal copy of the May 

18 edition of the paper.  Now depending on the temporal relevance of this data, it can be 

the May 18 edition of the Chronicle as it was when I first paid for it or the discarded copy 

days later in the fireplace burning.   
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Using a combination of the previous philosophies and advice, the initial face 

recognition methodology that was focused on creating a refined face space, is modified 

instead to incrementally build upon the steps of segmentation, processing, and 

identification.  These steps utilize commonly utilized information from the spatial 

dimension of the image, but also integrate and exploit spectral elements assisting 

throughout the segmentation, processing and identification phases.  Figure 99 shows the 

result of this evolution and the resulting face space hierarchy. 
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Figure 99:  Hyperspectral Face Recognition Hierarchy 
 
 

At the initial level, a normalized difference index similar to the NDSI is used in 

the spectral space to locate and segment skin and hair in the face image.  The following 

step of locating or enhancing edges in the spatial space provides textural cues that 

complement the skin and hair segments.  A holistic approach of the eigenface method is 

applied next to integrate a spatial grayscale representation from the visual spectrum [20].  
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The ensuing step switches to the spectral domain as spectral angle matching is applied to 

select areas of the face for matching tissue types.  The last step uses Scale Invariant 

Feature Transform (SIFT) to locate robust interest points from the spatial representation 

of the face for final identification [60].  The utility of these successive steps were first 

explored as a progressive filter and later used more effectively in the fusion of matching 

scores. 

Daugman framed the fundamental performance challenge that we faced in 

creating a face recognition systems [51].  Ideally, these systems and evaluated feature 

sets should contain the smallest intra-class variance and the largest inter-class variance.  

Unfortunately, when different face images are captured with a variety of expressions, 

poses, and illumination, it is common for the intra-class variance to be larger than the 

relative inter-class variance.  With this challenge in mind, it is important to select and 

incorporate features that remain stable across the multitude of variations that are 

encountered when utilizing face images.   

Using both general and detailed features provides stability for recognizable 

attributes.  The face shapes act in the same manner as they do for the accomplished artist, 

framing his portrait [5], or the recognizable silhouettes of famous celebrities, using 

nothing more than the outline from a front or profile view to aid in recognition.  At the 

connecting levels, familiar spatial and spectral characteristics are used in various 

matching algorithms.  Finally on the end of the continuum, the specific SIFT interest 

points provide scale and rotational invariant details that tend to be tolerant of illumination 

changes.   
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Figure 100:  Mathematical Formulation of HSI FR Problem 

 

The notation, shown in Figure 100, can be used to assemble the mathematical 

framework for the problem addressed by the proposed hierarchy.  Continuing with this 

initial framework the logical next step would be to choose the weightings that maximize 

the true positive rate.  This approach, although novel for hyperspectral imagery, has been 

replicated for other image types and with other algorithms but has proven limited ability 

to advance face recognition past its current limitations and challenges discussed earlier.  

A more adaptive and intelligent framework such as that offered in the QUEST 

methodology would have to be developed to elevate this initial approach to new 

possibilities.  The means to implement this methodology and the associated performance 

and efficiency advantages will be investigated through experimentation. 

Although the problem is articulated in terms of true and false positive rates, the 

primary means of evaluation and comparison with published approaches is through the 

commonly used CMS plot.  The CMS plot portrays the true positive rate but additionally 
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illustrates the attempt in which the correct face was matched.  For initial testing, the 

number of probes will equal the number of candidates in the gallery.   

Using the combined expertise cited previously, the original experimental 

methodology (see Figure 61), was expanded from simply tailoring the comparison space 

and gallery to an approach that incorporated a incremental strategy that proceeds from 

general characteristics, that are easily extracted, to more specific and robust features.  The 

next element in the development of this hierarchy is to incorporate contextual cues to 

construct our version of the May 18th edition of the Chronicle.  This instantiation of the 

face has developed from a simple shape, to a detailed image containing tissue spectral 

signatures and invariant interest points and soon these features will be linked to provide a 

contextual representation of a subject’s face like it has never been used before. 

 
Application 
 

A review of the basic matlab functions along with supporting detail follows to 

provide an overview of the underlying algorithms implemented in the hierarchy.  The 

first function, faceSA.m, locates the face surface through a combination of a normalized 

difference ratio and spectral angle.  The comparison of resulting face shapes is 

accomplished with the eigenface algorithm.  The next function, hairNRGB.m, acts in a 

similar manner as the algorithm locates hair surfaces through NDVI difference index and 

has options for refining the detected hair segment using a threshold based on either 

Mahalanobis distance or standard deviation.  The eigenface algorithm compares the 
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detected hair segment shapes.  The outputs of these first two functions are the relative 

hair and face segments and the relative scores based on Euclidean distance.   

Utilizing the previous face segments, the next function called  faceparameters.m, 

calculates common measurements such as area, major axis, minor axis and eccentricity to 

create a feature vector of measurements.  These feature vectors are compared using the 

Mahalanobis distance between each vector and the mean vector of the gallery.  The 

segmented shapes of the hair and face are subsequently used as a fitted template to 

extract a grayscale representation of the respective segments.  The spatial matching 

capability of eigenface is implemented with the functions, facerecognition.m and 

facerecognition2.m, that compares grayscale images of face, or combined face and hair 

images respectively.  The matching score is a measurement of Euclidean distance. 

The spectral elements of the images are evaluated using the following two 

functions.  The first function, hairSpectrum.m, conducts spectral matching of hair 

signatures, but due to the variability of hair samples, is aided with the outlier detection 

method, BACON, before Mahalanobis distance is measured between subjects.  For 

spectral matching of the face segment, the function, facespectralmatching.m, conducts 

spectral matching of skin signatures using a spectral angle comparison of the mean 

signatures of each face.  The option to improve results using the BACON algorithm 

refinement is available for both functions.  The output of this matching function is a score 

representing the measurement of spectral angle. 

The interest point matching is accomplished by Lowe’s SIFT algorithm [60], [61], 

in the function, SIFTrecognition.m.  The function identifies the number of matching 

interest points, or SIFT keys, between individuals.  This algorithm can be applied to the 
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face image or the combination of hair and face images.  The number of matches is 

normalized and then subtracted from one to represent the best number of matches as the 

lowest score.  This transformation is conducted to produce an output score similar to 

other functions where a normalized distance closer to zero represents a stronger match.   

Assembling these functions together produces a number of comparisons between 

subjects that parallels the image-processing scheme described earlier by Ando [109].  

Proceeding from low level segmenting, through high level processing techniques, details 

are integrated across different perspectives that form an identification system that utilizes 

both spatial and spectral information.  Using the functions in a serial process, the 

hyperspectral face recognition (HFR) methodology becomes a functional identification 

system as illustrated in Figure 101. 
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Figure 101:  Applied HFR Hierarchy  
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Applying this methodology using both score and rank fusion illustrates the value 

of this technique and the results are depicted in Figure 102.  At the basic stage, we see the 

marginal value of shape measurements, displayed as soft features.  The accuracy of the 

algorithms increase as the resolution of the features increase up through the notable SIFT 

algorithm that matches only invariant interest points.  One exception is the surprising 

utility of the simple method matching the segmented hair shapes.  This characterization is 

helpful for this purpose that assumes an unsuspecting or cooperative subject, but could 

just as easily be detrimental when a subject is determined to circumvent the system by 

altering their appearance with a change of hairstyle.  

 
Figure 102:  Score and Rank Fusion Results for HFR 

 
 

To examine the relative contribution of this strategy, a comparison is made with 

the results obtained by algorithms previously used in hyperspectral face recognition 
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research.  These algorithms include, Pan’s spectral face algorithm, Elbakary’s spectral 

matching, and the well-known eigenface method.  Dissimilar from their published results, 

they all encounter difficulty when applied to this challenging data set.  On the other hand, 

the initial results obtained with the serial implementation of the HFR hierarchy shows 

immediate promise.  The benefits of this approach include the removal of human 

interaction and the accompanying time and effort required for the manual processing of 

images, as well as the increase in performance as shown in Figure 103.  Keep in mind, for 

this initial attempt, no adjustment or optimization of the fusion weightings where used.  

This opportunity must be explored in future efforts to pursue maximum performance 

gains. 

 

Figure 103:  CMS Plot of HFR Methodology vs. Competing Methods Tested on CMU Data 
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Utilizing the available database to the maximum extent possible, a second group 

of probes was selected to serve as a validation set.  Limited to the subjects that attended 

at least three separate sessions; the number of validation subjects had to be reduced from 

36 to 28 subjects.  The actual breakdown is shown below in Figure 104. 

 

Figure 104:  CMU Validation Data Set 
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Figure 105:  CMU Validation Results 
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Using the same hierarchy and supporting algorithms the validation confirmed the 

earlier promise of the methodology, producing very similar results.  The significant 

increase in overall accuracy was maintained over the other leading HSI algorithms.  The 

general performance remained consistent with some slight shuffling of the relative 

effectiveness among supporting functions.  The validation test results are shown in Figure 

105.  For this limited sampling, it is difficult to make additional observations outside the 

intended purpose of the validation effort. 

Although the increasing capability of modern sensors provides an ability to 

analyze wider portions of the electromagnetic spectrum, the quantity of data that 

accompanies this technology brings an associated cost of processing and storage.  

Operational face recognition systems are often required to process large databases that 

can quickly diminish the potential value of using hyperspectral data if an efficient 

approach is not used.   

For this reason, several strategies are leveraged to reinforce efficient extraction 

and analysis of the high dimensional hyperspectral data.  The straightforward manner of 

the normalized index, essentially a ratio of relevant wavelengths, for hair and skin 

segmentation rapidly selects a small subset of pertinent data for processing through the 

collection of recognition algorithms.  Using the resulting segment shape as a tailored 

template, as opposed to an arbitrary ellipse or rectangular frame, data compression is 

easily implemented as the span of hyperspectral frequencies are combined to produce an 

average representation, represented as a grayscale image, for spatial matching tasks.   

Moving from algorithmic to feature set efficiencies, the calculated soft 

characteristics used can be utilized to filter out images from the gallery that are irrelevant 
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to our search based on distinctive differences between descriptive characteristics.  A 

simple example of this was shown earlier using a NN application on spectral skin 

signatures that is reliant on the biological melanin content of an individual’s epidermis 

and stratum corneum.  As these soft characteristics are extracted and combined, 

contextual layers are developed that reduce the number of subject that must undergo a 

complete comparison and provides information similar to Jain’s soft biometrics [1].  

Recalling Jain’s earlier research on soft biometrics, his proposed follow-on research was 

to develop an automated biometric system that could extract and use soft biometrics to 

improve biometric modalities.  This research begins to accomplish this task and 

reinforces the findings of his research. 

 

 
Figure 106:  Recognition Agent Interface 
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Using only a subset of available data, along with some applicable abstractions, 

links are generated and information is shared, creating a knowledge interface among the 

respective algorithms.  This structure is intended to replicate the QUEST methodology 

and agent relationships discussed earlier.  Referring to Figure 106 and recalling in the 

QUEST methodology, we attempt to develop a intelligent computational system that 

captures the advantages of qualia-like representations.  These representations provide a 

context of biometric characteristics, fiducial features, and cues across the electromagnetic 

spectrum.  The supporting functions are linked agents that communicate information that 

is the context for other agents and in turn, this contextual information can improve 

performance and efficiency.   

In summary, this agent interface uses the normalized difference indexes of skin 

and hair to create segmented layers that are used singularly and in combination to create 

information layers and a contextual framework utilizing cues from both the spectral and 

spatial realms.  This representation can be used as a front end to enable automatic 

preprocessing and integrated with subsequent recognition applications.  This information 

sharing is valuable in aiding performance as well as addressing the weaknesses of 

circumvention and uniqueness.   

 

Adaptive Feedback 
 

To incorporate the ability to evaluate the most relevant comparisons over time, 

adaptive feedback loops were added to the established hierarchy and are depicted in 

Figure 107.  The feedback loop for the adaptive gallery is included to examine the impact 
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of changing the candidate gallery to incorporate only the most likely candidates.  This 

procedure involves reducing the gallery size by removing the lowest scoring subjects.  

This process is applied only for subject matching scores that fall below a user specified 

threshold.   

A multi-look functionality was added to test additional probe images if they are 

available.  This facet can represent a temporal dimension that would be provided by the 

multiple probe images that are available through multiple image captures or with 

hyperspectral video that would obtain a series of face images over time.  Both feedback 

loops can be active or applied individually.  Recalling the insight gained by Sinha’s 

research [4], the comparative bias between images over time has important implications 

in human recognition and may play an important role in computer recognition as well.  

This new construct complete with adjusting feedback loops is now significantly different 

from the conventional biometric system illustrated in the beginning of Chapter 3. 
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Figure 107:  Adaptive Logic 
 

Real World Requirements 
 

At the 2007 IEEE Conference on Biometrics: Theory, Applications, and Systems 

(BTAS), Dr. Michael C. King spoke as the Director of the Intelligence Technology 

Innovation Center.  Now known as the Intelligence Research Projects Activity (IARPA) 

Smart Collection Program, this organization is responsible for guiding the technology 

development of the federal intelligence agencies.  Dr. King declared that the development 

of future biometric systems should concentrate on extending the current capability in 

three dimensions to make them useful to our nation’s intelligence areas.  The areas of 

capability that need improvement are identifying subjects at greater distances, during 
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subject movement and when subjects are uncooperative and try to circumvent recognition 

systems.  Current biometric capability in this domain, shown in Figure 108, resides near 

the origin of this axes and additional research is required to extend capability in all 

dimensions.  

 

Distance 

Subject Non 
Cooperation 

Subject Motion 

Current Biometric 
Systems 

 

Figure 108:  Extension of Biometric Research 
 

This need for face recognition has been aided by this research in the following 

ways.  The use of hyperspectral imagery is a well know technology for remote sensing 

applications but has not been operationally applied to face recognition.  Subject tracking 

is already possible through the use of IR imagery but the inclusion of information from 

other wavelengths can improve recognition capability of IR based applications.  This 

potential has already been shown with the work of Bowyer [89] using grayscale images 

in conjunction with IR imagery.  Similarly, motion and tracking capability can be 

enhanced with a hyperspectral data and the proven ability to detect and segment human 

skin and hair.   
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Through the use of soft biometrics and the QUEST hierarchy, distance 

recognition can also be enhanced.  Earlier detection and screening potential made 

possible through the broad use of the electromagnetic spectrum can provide useful cues 

before adequate resolution is obtained for positive identification.  This capability can also 

enable the classification of uncooperative individuals at a distance through the use of 

spectral information from a number of surfaces and perspectives.  The ability to evaluate 

the spectral signatures of individuals and substances allows the detection of spoofing 

attempts to include disguise or obscuration.   

Following the incorporation of selected soft characteristics, additional features are 

used to alleviate many of the aforementioned challenges of circumvention and 

uniqueness.  With the size and shape of the skin and hair segments already identified, 

spectral signatures are automatically collected from these segments, processed and used 

in various matching algorithms.  Previously, a series of cumulative match curves for the 

different tissue was shown (Figure 76) and although these applications do not 

conclusively identify an individual with this data, it provides an additional reduction in 

uncertainty, as identities are cumulatively determined.  Additionally, the unique signature 

of the hair, compared against human skin, can help locate and segment the important 

portions of the face including hairlines, eyebrows, beards and mustaches.  At the same 

time, the unique spectral characteristics can also serve to highlight inconsistencies such 

as individuals trying to alter their appearance with hair extensions, dyes, or wigs.  The 

same is true of an individual attempting to circumvent a recognition system by using 

makeup or prosthetics to disguise their appearance.   
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This performance capability addresses the challenges of non-cooperation and 

other pressing needs as outlined by our nation’s intelligence agencies.  The ability that 

Dr. King is seeking is contained in the potential of HSI and the framework outlined by 

the QUEST methodology.  Through this methodology the capability operational envelope 

for face recognition can be extended beyond traditional applications in all three of the 

desired areas. 

The Handbook of Face Recognition [105] summarizes the implementation of face 

tracking and recognition from video data.  Most systems primarily focus on face 

detection and tracking and subsequently implement recognition after an image meets 

certain size and pose requirements.  In this multi-look implementation, the considerations 

of size and pose are minimized with the use of the scale invariant feature transform that 

identifies both whole objects and partial segments at various orientations and scales.  The 

incorporation of both spatial and spectral classifiers supplements this robust functionality.   

A common critique of “still to still” recognition approaches that the attempt to 

solve the tracking and recognition problems sequentially is that they do not exploit the 

temporal aspect of the video data.  The design approach in this research solves the 

tracking and recognition problems simultaneously while using temporal information 

through the use of hyperspectral data and the feedback processes that adjusts gallery size 

and composition, injects new and subsequent images, and offers the possibility to use 

trend information and decision thresholds for an intelligent and adaptive system.  The 

incorporation of the unified probabilistic framework by Chellappa [105], applicable to 

any still to still application, should be a considered for future enhancements and analysis. 
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Figure 109:  Ensemble Enhancement for Future Research 
 

The final adaptation incorporated into this methodology are control variables to 

enable the selection and weighting of agents used in the fusion process.  Research by 

Chawla [33], [34] and Kuncheva [86] have highlighted the importance of randomness 

and diversity in the creation of classifier ensembles.  The systematic and random 

selection of these active agents should be a continued area of research.  The appropriate 

adjustment to this framework would be the addition of a third feedback loop for updating 

the agent ensemble selected as pictured in Figure 109. 

 
Graphical User Interface (GUI) 
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Figure 110:  HSI FR GUI for Data Exploration and Strategy Development 
 

To facilitate data analysis and assist with visual interpretation of the results, a Matlab-

based GUI tool was designed to operate and test the designed facial recognition system.  

The GUI, pictured in Figure 110, is a direct parallel to the architecture presented earlier.  

A user can select the active agents, enable desired feedback loops, and designate fusion 

weighting schemes while simultaneously analyzing results.  The GUI displays the probe 

image to be matched as well as the best current match directly opposite it.  Below these 

images is a line-up of the top ten matches displayed in a thumbnail depiction along with 

their true identity and associated matching score.   

Viewing the results from each individual agent is permitted by selecting the algorithm 

of interest in the “Results to Display” drop down menu.  If feedback loops are employed, 

the user can view the results from the specific iteration through the “Gallery Set Results 

to View” menu.  The pictorial results are viewable in either grayscale or color images.  
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To review the quantitative results, the user can choose from an assortment of summary 

products.  These products include cumulative match score plots, box plots or histograms 

of the relative local scores for a single probe or a summary view of all matching scores 

for the entire test set.   

For computational planning purposes, Matlab’s multiple processor pooling was 

employed on a dual quad core computer with 16GB of RAM.  The processing 

requirements of the hyperspectral data along with the possible array of algorithms 

benefited from the occasional use of the parallel processing capability of this system and 

the built in functionality of Matlab’s parallel processing toolbox.  To review results on 

any computer, a utility tool was developed to enable users to view saved results of any 

prior run by loading a single file.  This utility file will display the active agents used, 

types of feedback loops employed, the associated weighting schemes, along with the 

ability to view all related results and images.  The user of the utility tool is notified if the 

current computer can support the computational requirements of the recognition software 

suite.  A sampling of results will be reviewed in the next section to demonstrate the 

capability of the QUEST HFR methodology and the functionality of the GUI.   
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V. Results and Findings 

 
Starting with the initial round of results that utilized a weighting that was biased 

towards the most effective SIFT algorithms and a combination of both hair and skin 

segments, the CMS reveals the ability to correctly identify all candidates in the test set.  

This performance alone exceeds previously devised strategies as applied to the CMU 

dataset that resulted in the following correct matching capability: Spectral Face (Pan) 

56%, Eigenface (Pentland & Turk) 20%, and Spectral Matching (Elbakary) 14%, as 

depicted earlier in Figure 88.  This performance is achieved despite the difficulty with 

data quality, appearance variations among the subjects during separate sessions, 

movement and changes in facial expression during image capture and the alteration of 

hairstyles and the addition of sunglasses.  Figure 111 depicts the overall results.   

 
Figure 111:  Cumulative Match Score Results Including Score Fusion 
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Although the performance is encouraging, there is insight offered by evaluating the 

quality of the match.  Additional data analysis functionality was incorporated into the 

user interface for this purpose.   

A combination of score and rank fusion strategies were tested with the most 

effective being a weighted score fusion strategy.  The performance depicted in the 

previous cumulative match score was also aided by the interaction of contributing sub-

methods.  The ability to process and match both the independent segments of hair and 

face and combined images through the spatial and spectral domains provides an added 

performance boost over earlier strategies. 

The additional functionality of the adaptive gallery and the multi-look feedback 

allows the recognition process to continue until the results meet an acceptable threshold 

or confidence level.  During each repetition, the gallery size is reduced by eliminating the 

poorest gallery candidates and implementing additional probe images at each iteration.  

Through this repetitive process, classifications with the poorest matching scores are re-

evaluated to confirm the correct identification.  The recognition capability that results 

provides matches that are not only correct but also obtained with an acceptable level of 

confidence.  This process is investigated further with the help of the interactive graphical 

user interface. 

Using the boxplot function of matlab, the matching scores can be quickly 

explored without making unjustifiable assumptions and the quality of the matches can be 

inspected and intuitively characterized.  The box plot representation was chosen because 

of the ease in interpretability and its robustness to various distributions and outliers.  

With this single display, only a quick inspection is needed to visually evaluate the quality 
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of the match as well as the spread of gallery scores associated with the selected probe.  

With the side by side arrangement, the relative quality across the entire set of probes and 

the global population of comparison scores is obtainable visually.  This ability will be 

important as assorted links and feedback loops are experimentally tested in the search for 

performance enhancements.  A quick review of this method first advanced by McGill, 

Tukey and Larsen follows [114]. 

The median is annotated as the middle red line, the box marks the 25th and 75th 

percentiles, while the whiskers mark the boundary of the data points, not including any 

points identified as outliers.  The determination of outliers utilizes the boxplot matlab 

function and annotates the points identified as outliers as red plus signs (+).  Using the 

25th quantile (q1), 75th quantile (q2), and the whisker length (w), set to the default value of 

1.5, outliers are designated such if their score is larger than [q2 + w(q2 - q1)] or smaller 

than [q2 - w(q2 - q1 [115])] which equates to approximately +/- 2.7σ .   

 
Figure 112:  Box Plot of Match Scores for All Probes 
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With this functionality, the span of all matching scores can be reviewed for 

quality and anomalies.  Figure 112 depicts the entire set of all matching scores, delineated 

by probe to display the range of and quality of matches for the entire test set.  Individual 

box plots are displayed on the GUI to the right of the closest match for the particular 

probe selected as shown in Figure 113.  In this case, the evaluation of probe number 33 

shows a typical strong positive match with a score obtained between zero and 0.1 which 

is both distant from the median and 25th quantile and as such, considered as the only low 

valued outlier by the box plot function. 

 
 

Figure 113:  Box Plot of Match Scores for Single Probe 
 

An inspection of the images located in the “Top Gallery Matches” section below 

the probe and best match, shows the top ten matches and their respective scores.  A quick 

review of this information offers the user an indication of how well the system is 

operating.  The illustration in Figure 114 shows a depiction of the subsequent ranked 

matches combining the image, the image identity label (see earlier section on CMU data 

for explanation) and the respective score.   
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Figure 114:  Visual Depiction of Match Candidates 
 

For this particular probe, the top 10 matches happen to possess similar 

characteristics with short hair, no glasses, similar pigmentation and with the top nine 

being male subjects.  The intent behind some of the selected features is to integrate soft 

biometric qualities into the hierarchy.  In this particular case, the general descriptions 

appear to be consistent in snapshot of the initial round of results.  

Although the box plot and visual depiction of the matches are valuable, further 

evaluation may require a more descriptive representation of the matching scores.  With 

the creation of a histogram, both the distribution and separation from the mean and 

standard deviation can be evaluated.  This option is available through the selection of the 

appropriate toggle button.  The global distribution toggle button displays all scores from 

the data set, where as the local distribution toggle button display a histogram for only the 

scores associated with the selected probe.   

The distribution for all match scores in the entire test set and the distribution of 

the local scores for the current probe are shown in Figure 115.  Much like the box plot, 

the histogram is useful in illustrating the separation between the scores and outlying 

scores on both extremes.  Unlike the box plot, the histogram depicts the relative 

allocation of scores along the scale. 
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Figure 115:  Distribution of Match Scores (Global and Local) 

 
 

To explain the functionality of feedback loops of the hierarchy as they relate to 

the GUI, an example of the iterative processing of one of the matches will be reviewed.  

During the early stages of this research, a goal was set to create a tailored comparison 

space for improved identification.  The logic behind this strategy assumed that shape 

comparisons for hair and face, as well as the various eigenface comparisons should adjust 

as the gallery of candidates is tailored.  The mean image and subsequent basis set will 

gradually alter forcing changes in the comparison scores and rankings.   

This adaptation can have a significant effect on the underlying characteristics 

collected by the agents and ultimately the overall results.  The comparative matching 

scores are relative and dependent on the gallery make-up and the extracted descriptive 

features.  The changing gallery leads to an adaptive feature set and an increasingly 

relevant context for our comparisons.  The shrinking subspace and adaptive comparisons 

produce the tuned face space sought after in early stages of the research as shown in 

Figure 61. 
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Figure 116:  GUI Evaluation of Sub-standard Matches (Subject 12) 
 

An investigation into one of the higher match scores will provide an example of 

the effects of the adaptive processes.  By inspecting the box plot of all probes (Figure 

112), the resulting scores for subject number 12 (11th

Figure 116

 probe), is noticeable because of the 

value of the best matching score.  Using the GUI, , for closer inspection of the 

initial match for this subject the underlying results will be inspected more closely. 

Although the correct match has been made, the score of 0.301 is higher than 

typical matches, greater than two standard deviations above the mean of 0.092, for the 

other probes in the test set.  There is only one other score of worse quality (Subject 36 or 

the 32nd  probe) using this same criteria and this probe will be investigated later using two 

separate strategies.  By inspecting the box plot, the score is identified as the only outlier 

on the lower end of the score range.  The nature of the match does not seem troubling as 

the top candidates are visually inspected, revealing an array of male candidates, with one 

exception, and all with relatively similar characteristics including short hair.  A closer 
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inspection of the score distribution, Figure 117, does not indicate any problems other than 

a closer proximity of the best matching score to the remainder of the candidate scores. 

 
Figure 117:  Distribution of Substandard Match (Subject 12) 

 
Transitioning to the next iteration, a reduction in the gallery is made by selecting 

the toggle button for the Gallery Set Results to the first reduction.  This iteration only 

removes two of the candidates with the largest matching scores.  By inspection of the 

GUI (Figure 118), the resulting box plot and histogram (Figure 119), little has changed 

except for the removal of the high end scores, which are undetectable by the positioning 

of the box plot whisker at the far edge of the match score range. 

 
 

Figure 118:  GUI Display after Reduction Step - Negligible Improvement for Subject 12 
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Figure 119:  Box Plot and Distribution of Matching Scores - For First Reduction for Subject 12 
 

Looking at the global box plot (Figure 120), shows the relative comparisons 

between probes and the likely candidates for an additional round of processing.  Notice 

that all but one of the identified outliers on the high range of matching scores have been 

removed.  Our subject of interest, is depicted as the 6th probe below. 

 
Figure 120:  Box Plot for Evaluation of Reduction Set 
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For this next round, the respective gallery is reduced once again and a new probe 

image is used if one is available.  For this round of matching, the results are more 

encouraging.  In addition to the noticeable change in the score, now 0.097, there is a more 

significant separation (4.26σ) between the correct match and the other gallery scores as 

shown in the both the local box plot and local histogram (Figure 122). 

 
 

Figure 121:  GUI Display for Second Reduction - Significant Improvement for Subject 12 
 

 

Figure 122:  Box Plot and Distribution for Second Reduction (Subject 12) 
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Evaluating the quality of scores across the remaining test set using the global box 

plot, displayed in Figure 123, reveals the most likely candidates for additional iterations 

of this process.  Subjects 1 and 2 appear to be both a satisfactory score, less than 0.2, and 

also with a separation that identifies them as low value outliers compared to the 

alternative matches in their respective gallery.  A point of clarification here is that each 

probe’s gallery has changed independently of the others based on their respective scores.  

So at this point in time the we are looking at potentially 5 different galleries, albeit a 

majority of their member would be in common since they started from the same original 

set of subjects.  The remaining subjects, 3 through 5, could be handled either as accurate 

match or a candidate for further processing depending on the chosen logic and threshold 

of the user. 

 
Figure 123:  Box Plot for Final Reduction Evaluations 

 

For actual implementation of this system, the previous process would be allowed 

to run to completion where all matches would achieve a satisfactory level of confidence 
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is achieved or be categorized as a non-declaration (NDEC) candidate.  The purpose of 

this example was not to determine a specific confidence level or metric but instead to 

illustrate the value of this multi-dimensional, contextual, and iterative approach for face 

recognition. 

This process was applied across many combinations during the course of this 

research effort with numerous more on the drawing board.  Results from several 

variations of the combination just reviewed are shown below in Figure 124.  As depicted, 

the results of all these combinations and simple weighting schemes is encouraging with 

only one subject being misidentified in just the first round of applying the QUEST HFR 

methodology.   

 
 

Figure 124:  CMS for Various Fusion Combinations and Weightings 
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To follow-up on the one subject misidentified in all of these test rounds, the 

quality of the match will be reviewed further to see if this match score would be singled 

out for additional processing and how the identification score changes through 

subsequent iterations.  At first glance, the matching score is neither an outlier or among 

the top half of the best matches based on the overall matching score (Figure 125).  In fact, 

based on other best match scores, the matching score is 2.59σ above the mean of the top 

matches (0.112) and a likely candidate for iteration by most standards. 

 

Figure 125:  Global Box Plot of All Match Scores for 6 Agent Unity Weighting 
 

The distribution of scores are scattered along the normalized scoring scale with 

virtually no separation observable.  As the methodology is applied, the distribution of 

scores is shown in Figure 126.  Moving from the initial round, depicted in the upper left 

corner, the scores remain stable in the second round (upper right), start to migrate with 

the third round (lower left) and finally separate in the fourth round of processing.  The 



 
 
  

194 
  
 

lowest matching score is clearly removed from remaining cluster of scores and upon 

further inspection we see that the correct match has now been made (this was initially 

misclassified in the first round) and at a level 3.11σ below the mean matching score. 

 
 

Figure 126:  Progression of Score Distributions for Subject 36 (6 Agent/Unity Weighting) 
 

To illustrate that this is not an anomaly for this agent combination (six agents and 

unity weighting), another inspection of this methodology is made for the algorithm 

combinations utilizing seven agents and SIFT biased weighting.  The SIFT biased 

weighting strategy leverages the utility of the SIFT algorithms with and increased 

weighting of two and half times the other agents.  The matching score results after the 
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first round of matching are shown in Figure 127.  Again the same subject, number 32 in 

the figure, is among several likely candidates for a closer inspection. 

 

Figure 127:  Global Box Plot of All Match Scores for 7 Agent SIFT Biased Weighting 
 
Following the same routine, that utilizes both the adaptive gallery and multi-look 

functionality, we see the iterative grouping of the matching scores and the separation of 

the correct match in the fourth round with a distinctive matching quality. 

 

Figure 128:  Progression of Score Distributions for Subject 36 (7 Agent/SIFT Biased Weighting) 
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Figure 129:  Recognition Progression for Subject 30 (7 Agent SIFT Biased) 

 

In an effort to be exhaustive, a final example using the worst match score (>3σ) 

from all the testing accomplished is illustrated in Figure 129.  The progression in this 

illustration works through the complete span of images available in the CMU database, in 

this case 5 rounds, and tests the iteration limit of this database.  An interesting and 

expected result not shown in this depiction is the shuffling of the next closest matches as 

the face space is tuned through this adaptive process.   
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VI. Conclusion 

 

The field of face recognition continues to be a highly researched area resulting in 

the development of many capable techniques and methods.  As the use of these systems 

grow, so too will the number of attempts to circumvent these tools and avoid detection.  

Countermeasures to circumvention usually take the form of multimodal biometric 

systems.  Unlike many algorithms found in the literature, operational recognition systems 

are required to operate in uncontrolled environments challenged by various levels of 

cooperation from the intended subjects.   The development of this methodology considers 

these challenges as it seeks to exploit the electromagnetic spectrum beyond the 

commonly used visual and IR imagery.   

Hyperspectral imagery, already widely used for remote sensing, can be a 

technology that spans the requirements for accuracy and robustness for environmental 

variations and circumvention attempts. If hyperspectral technology is going to provide a 

solution to this challenges an overall hierarchy and processing methodology must be 

devised to efficiently parse large amounts of collected data.  This will become more 

evident as hyperspectral sensors expand to video imagery and pattern recognition 

research advances to intelligently process and analyze this data.   

In this research effort, the goal was to develop a hierarchal approach to efficiently 

process hyperspectral face data and demonstrate the benefits of integrating the spatial and 

spectral domains of imagery.  The preliminary fusion results verify the value of 



 
 
  

198 
  
 

incorporating soft characteristics obtainable into face recognition methods.  Even with the 

undeniable uniqueness of every human being, no single metric or feature has 

demonstrated the non-intrusive ability to identify all individuals in uncontrolled 

environments across large populations using a single modality.  A demonstrated 

alternative to this approach may be to fuse contextual or complimentary information in an 

efficient architecture that enhances effectiveness.  This general process is captured in a 

face recognition biometric system that offers performance and robustness and at the same 

time mitigates common weaknesses of face recognition applications.   

 

 

Figure 130:  QUEST Situational Awareness [120] 
 

The QUEST methodology and the various levels of awareness (Figure 130) was 

implemented with many of the key characteristics such as fusion, feedback, qualia, 

context, general to specific, hierarchical architecture and time incorporated into this 
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approach for detecting, distinguishing and characterizing faces but with a few simple 

adjustments almost any entity in the environment.  This is reminiscent of the JDL fusion 

framework where three levels of processing progress from locating and tracking entities, 

to assessing relationships between objects, and finally making inferences about the 

current situation [104].   

A summary of the findings from this research effort and their contributions to the 

field of pattern recognition, specifically to biometrics and the face recognition.  Recalling 

Jain’s earlier research on soft biometrics, he proposed follow-on research to develop an 

automated biometric system that could extract and use soft biometrics to improve 

biometric modalities.  This research accomplishes the task and reinforces the findings of 

his research.  Where as many leading face recognition systems rely on human interaction, 

many times significant time and effort, this system utilizes an approach that enables 

automatic and efficient segmentation of many of the textures and surfaces unlike 

approaches used commonly today in remote sensing applications.  Using this as a 

stepping off point allows the implementation of our best and most robust matching 

algorithms to be used leveraging complimentary information that forms the important 

context for all recognition to be performed.   

To address many of the weaknesses of current face recognition applications, the 

first being uniqueness, is addressed through the simultaneous use of spatial , spectral, 

holistic, and local features that combine to portray an individuals identity in a robust and 

invariant representation.  It is only with these various perspectives and dimensions that 

provide the robust capability when faced with noisy imagery, changes in scaling, 

translation, and rotation or vulnerable to changes in background environment.  The next 
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and probably most exploitable weakness is that of circumvention.  The unique spectral 

signatures of human tissue types to include skin and hair are detectable, recognizable, and 

distinguishable from make-up, wigs and prosthetics as shown by this research and as well 

as earlier efforts most notable Pavlidis [54].  Finally, by combining these attributes in a 

QUEST motivated hierarchy, we are able to achieve a performance advantage in both 

time and accuracy not seen in hyperspectral face recognition to date.  The 

accomplishments just mentioned come at a fortuitous time as real world events highlight 

the weakness of current technology and the requirements for future security systems.  

This research points towards a solution for the same challenges facing our nation’s 

security and intelligence organizations and that of the international community at large.  

The continued advancement of technology and some of the principles illustrated in this 

work can help mitigate the increasing threats and challenges of securing national boarders 

and populations. 

 

A summary of the contributions of this research are listed below. 

• Development of a hierarchal approach to efficiently process data (demonstrated using 

hyperspectral face data)  

• Establishment of automatic preprocessing method for hyperspectral data 

(demonstrated using face imagery) 

• Demonstration of the benefits of integrating spatial and spectral domains of imagery 

• Automatic extraction and integration of novel soft features (biometric) 
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• Verification of the value of incorporating soft characteristics (demonstrated using 

face recognition)   

• Establishment of QUEST methodology in face recognition demonstrating the 

engineering advantage in both performance and efficiency compared to leading and 

classical face recognition techniques 

• Development of interactive environment for the testing and expansion of the 

framework advanced in this initial research effort 

 

On October 29, 2010, a young Asian passenger boarded a flight from Hong Kong 

to Canada wearing a mask that transformed him from his youthful identity into an elderly 

Caucasian and smoothly through the unsuspecting customs and security officials (see 

Figure 131)[125].  Sometime later aboard the in-flight passenger aircraft, our traveler 

removed his disguise, where nearby observant passengers noticed the sudden change in 

identity and fortunately alerted security officials.   

 

Figure 131:  Disguise Raises Security Concerns [125] 
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In reaction, Janet Napolitano, the U.S. Secretary of Homeland Defense [125], 

acknowledged that prospective terrorists could implement this same tactic.  Jamie Smith, 

a former CIA officer, offered that this created the opportunity for terrorists to move from 

one country to another undetected [125].”  The use of a commercially available silicon 

mask, by a clever passenger seeking asylum, was able to bypass the cumulative security 

measures and monumental investments of the last decade.  It is a strong possibility that 

groups besides freedom seeking citizens and security officials noticed this recent event.  

From the very beginning, the motivation behind this research was never fueled by the 

academic contribution.  It is only a naive hope that a little insight for future security 

measures is provided against a multitude of threats that look…just like you and me. 
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VII. Future Work 

 

There are numerous launch points for future research that stem from this initial 

effort.  From this attempt to combine common algorithms to tackle recognition problems 

utilizing the evolving technology of hyperspectral imagery and video.  In the military 

domain alone, there is an explosion of surveillance capability that is eagerly sought after 

throughout the Department of Defense.   

Contained within recent news accounts on current military operations is a glimpse 

of the number of growing challenges surrounding the collection of multi-sensor imagery.  

Earlier this year, ten of the heavily armed and frequently used MQ-9 Reapers, crucial to 

the success of the war on terror, started to be equipped with a wide-area airborne 

surveillance sensor called Gorgon Stare.  This sensor is capable of providing motion 

imagery for a four-kilometer radius, day or night, from up to 12 different angles [116].  

This sensor will not replace but supplement the current multi-spectral targeting pod on 

the Reaper that provides full motion video [116].  One of the current operational missions 

of the Reaper is to hover over buildings looking for insurgents on the move during 

engagements [116].  From this current mission alone, the benefits are obvious for the 

tactical impact of developing enhancements for this academic research effort.   

But this capability and the vast amount of data that will flow from these 

unmanned airborne assets is not fully comprehended until the extent of future acquisition 
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efforts and strategic implications for these assets are taken into account.  In 2006, the 

predecessors of Gorgon Stare were employed by the U.S. Army’s Constant Hawk and a 

year later the U. S. Marine Corps employed there own system Angle Fire [116].  The 

Gorgon Stare sensor is now being evaluated for placement on RQ-4 Global Hawk, MQ-1 

Predator, and Army MQ-1C Sky Warrior [116].   

The recent forecast by Secretary of Defense Robert Gates, stated that the military 

plans to triple its unmanned airborne inventory over the next decade [117].  In addition to 

this short-term forecast, consider the fact that the Defense Advanced Research Projects 

Agency (DARPA) is working on a project to increase the total number of views from 

twelve up to 60 [116].  Recently retired,  Deputy Chief of Staff for Intelligence, 

Surveillance and Reconnaissance (ISR), General David Deptula, stated that the eventual 

goal will be to study 30 to 60 targets simultaneously with one sensor pod [116].  The 

increase in sensor capability multiplied by the number of employed airborne assets 

should give you a feel for the size of the challenge to simply process this data.  Next we 

will turn to the Chief of Staff of the Air Force (CSAF), General Norton Schwartz, for an 

answer or confirmation of this challenge.   

In a recent interview with the CSAF [118], the reporter asked what the impact 

was for next generation drones considering it takes approximately 70 man-hours to 

process imagery data for each hour that a Predator is aloft and by his calculations some of 

these enhanced capabilities will drive that to an astounding 800 man-hours for one hour 

of flight data [118].  The CSAF’s answer was not reassuring, when he simply stated, “the 

bottom-line is, again, that we cannot continue to throw people at this.  We have to find 

ways to do this better, less manpower-intensive.”  Keep in mind; the previous examples 
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and this interview were only focused on air breathing assets.  In the last year, the 

experimental TAC-SAT 3 satellite equipped with a hyperspectral payload was turned 

over to the Air Force to support operations.   

The ability to investigate associated problems to this research has been 

significantly enhanced by the development of the Multi-Dimensional Face Recognition 

(MDFR) Graphical User Interface (GUI) and Interactive Development Environment 

(IDE).  Any extension of this research would be well served to explore advanced 

capabilities within this development platform.  Most of the following improvements 

could be studied using this software tool.  

In this research only one illumination setting was explored, that being the 

brightest lighting that employed three 600 watt halogen bulbs.  The reason for this, 

illustrated earlier was due to experimental nature of the camera and the difficulties with 

the imagery obtained.  Other lighting variations that utilized one of the lights, either from 

the left, right or center would provide variability that would provide the employment of 

an algorithm like the previously discussed Fisherface algorithm that has shown its 

strength in this arena with grayscale images.  The exploration and extension of this 

algorithm would be a tailor made arena to discover and exploit the algorithms 

contribution to hyperspectral imagery.   

The low illumination conditions presented with these single light settings provides 

an ideal setting that simulates one of the more difficult recognition environments and 

frankly one that has not been thoroughly explored with the sole exception of thermal 

sensors and imagery for tracking purposes.  These are just some of the opportunities that 
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naturally grow from the foundation of this research and are available using the existing 

CMU database. 

Although there was considerable experimentation with a combination of agents 

and algorithm weightings, an opportunity exists to apply an optimization method to the 

selection of these methods and weightings.  Recalling the earlier findings of Jarudi [6], an 

approach that considers image quality or resolution should be implemented to guide the 

relative weightings of features for maximum peformance.  The work of Friend [123] 

looked at various information theory-based methods to identify objects most likely to 

misidentified as well as developing an optimization scheme for selecting appropriate 

thresholds for classification or label accuracy.   

Multispectral segmentation and subsequent fusing has also provided advantages 

in the recognition of sub features such as the eyes as shown in Boyce’s [53] iris 

recognition research.  Unique spectral characteristics also present themselves when 

observing the human eye.  The iris contains melanin with remittance properties that can 

map to the soft biometric of eye color using multispectral information [53].  With the 

increasing ability to obtain this information at greater distances, this feature set could 

easily be integrated into the existing hierarchy.  This additional capability could once 

again span features from soft biometrics, such as eye color, to the very specific, utilizing 

the complex textural pattern of the iris.   

Using a dataset that is not closed, that is all probes are also located in the gallery 

and vice versa, will change the complexity of the problem and can be used to test the 

robustness the approach design.  Previous pattern recognition research by Friend and 

Bauer [123] looked at information theory based methods to identify subjects or objects 
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that were most likely to be misidentified.  In Friend’s original research [124], objects that 

were not like any used in the training set, our gallery, are labeled as out of library (OOL) 

and those subjects that are indistinguishable from more than one subject are subsequently 

categorized as a non-declaration (NDEC).  In these research efforts, the authors looked at 

OOL and NDEC methodologies that would optimize performance in these more 

challenging operating conditions.  These types of considerations would allow the final 

design to be better tailored to user requirements and the desired level of effectiveness or 

robustness. 

In a few places in this document, the CSU face recognition system was discussed 

and used as both a guide and a benchmark for this development.  One of the useful 

elements explored with the capability that is offered by that system was experimentation 

on the selection of the best distance measurement.  As pointed out by some of those 

findings, the answer to this question is often dependent on the algorithm used and 

imagery that being processed.  The impact of these decisions is not explored in this 

research and could provide both a needed understanding and perhaps improved 

performance. 

A number of classifiers were employed in this fusion architecture but much like 

the weightings, the selection of the best set of classifiers is not offered.  The work of 

Chawla [33], [34] on ensemble construction and testing offers some ideas on how to start 

this investigation.  Also important in this effort will be the inquiry into the contribution 

based on diversity measurements mentioned by Kuncheva [86].  All of these areas, 

initially applied to face recognition present another opportunity as it is applied to the new 

and exciting application of hyperspectral face recognition.   
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The structure of this algorithm allows the input of additional images to fine tune 

any early matching solution.  This happens simultaneously while any number of 

adjustments can be made with established feedback loops that reduce the gallery size of 

potential candidates for matching, selection and adjustment of algorithms weightings  or 

even the algorithms themselves.  Parallel processing explored in the testing of a range of 

setting for algorithms would provide additional computational power to enable multiple 

instantiations of this method for a combination of fusion methods that provide feedback 

to each other.  These methods may seem to be a little excessive given the results already 

obtained with the basic methodology.  The extension of this problem to an uncontrolled 

environment and the movement to hyperspectral video could easily adjust the problem 

space to a paradigm that may make this more understandable. 

As soon as think about this problem as it is applied to motion video sensors like 

those being employed in the Gorgon Stare sensor package on an unmanned airborne 

system, the slow jumpy version of the full motion video feed  provides a problem that 

would require jitter detection [122] and corrective methods for image registration and 

robust recognition capability.   

Although discussed and illustrated with initial testing, the area of disguise and 

occluded faces in hyperspectral imagery was not included in the performance testing.  

There is an opportunity to apply and extend the insights and methods provided by the 

research of Ramanathan [65], Chowdhury [66], and Pavlidis [54].  Certainly, the 

application of simple spectral angle matching can be implemented to identify subjects 

that may be trying to conceal their identity with excessive makeup or prosthetics.  More 

complex combinations of algorithms and adaptive processes will ultimately become 
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useful when applied to these multifaceted problems.  The appearance of many of the 

distinctive features of the ear shown in the hyperspectral image indicates an opportunity 

to exploit the single modality of hyperspectral imagery and apply this capability to 

occluded faces.  To date this area has not been explored and based on the complementary 

nature of ear and face features a recognition application that combines the opportunity for 

front and profile viewpoint features offers an opportunity for the design of a robust 

identification system.   

Performance optimization efforts and adaptive classification system should be 

studied for use in commercial or operational applications.  For these purposes, 

comparison testing should be conducted against other leading systems and the benchmark 

of human recognition.  Insights provided from cognitive research could be mimicked in 

this methodology.  For instance, the research of Jarudi [6] that illustrated the importance 

of external features versus internal features was dependent on the distance or quality of 

the image.  This testing plan to incorporate similar findings should look at recognition 

performance over changes in time, data sample sizes, and viewpoints.  A more thorough 

testing regime can easily be designed that exceeds those initially accomplished in recent 

Face Recognition Vendor Testing [15].  However, the testing conducted by NIST has set 

the foundation to for future research to build upon, challenge and bypass the incredible 

recognition capability of human beings. 
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