95 research outputs found

    Worms and the treatment of inflammatory bowel disease: are molecules the answer?

    Get PDF
    The lack of exposure to helminth infections, as a result of improved living standards and medical conditions, may have contributed to the increased incidence of IBD in the developed world. Epidemiological, experimental, and clinical data sustain the idea that helminths could provide protection against IBD. Studies investigating the underlying mechanisms by which helminths might induce such protection have revealed the importance of regulatory pathways, for example, regulatory T-cells. Further investigation on how helminths influence both innate and adaptive immune reactions will shed more light on the complex pathways used by helminths to regulate the hosts immune system. Although therapy with living helminths appears to be effective in several immunological diseases, the disadvantages of a treatment based on living parasites are explicit. Therefore, the identification and characterization of helminth-derived immunomodulatory molecules that contribute to the protective effect could lead to new therapeutic approaches in IBD and other immune diseases

    Bibliotheca antigua de los escritores aragoneses que florecieron desde la venida de Christo hasta el año 1500

    Get PDF
    Sign.: [ ]4, [asterisco]-2[asterisco]4, 3[asterisco]2, Aa-Zz4AntepLas h. de grab. calc., la primera es retrato de D. Felix de Latassa, entre port. y anteport. ; la segunda es escudo heráldico de D. Juan Martin de Goycoechea y Ciordia, a quien se dedica la obr

    Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus

    Full text link
    Background: In a murine model of inflammatory bowel disease (IBD), treatment of colitis in IL-10 gene-deficient mice with the parasitic helminth Heligmosomoides polygyrus ameliorates colonic inflammation. The cellular and molecular mechanisms driving this therapeutic host response are being studied vigorously. One proposed mechanism is that H. polygyrus infection favors the outgrowth or suppression of certain bacteria, which in turn help modulate host immunity. Methods: To quantify the effect of H. polygyrus infection on the composition of the gastrointestinal (GI) tract microbiota, we conducted two independent microbial ecology analyses of C57BL/6 mice. We obtained and analyzed 3,353 bacterial 16S rRNA encoding gene sequences from the ileum and cecum of infected and uninfected mice as well as incective H. polygyrus larvae at the outset of the second experiment and adult worms taken directly from the mouse duodenum at the end of the second experiment. Results: We found that a significant shift in the abundance and relative distribution of bacterial species in the ileum of mice is associated with H. polygyrus infection. Members of the bacterial family Lactobacillaceae significantly increased in abundance in the ileum of infected mice reproducibly in two independent experiments despite having different microbiotas present at the outset of each experiment. Conclusions: These data support the concept that helminth infection shifts the composition of intestinal bacteria. The clinical consequences of these shifts in intestinal flora are yet to be explored. (Inflamm Bowel Dis 2010)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78230/1/21299_ftp.pd

    African-American inflammatory bowel disease in a Southern U.S. health center

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory Bowel Diseases (IBD) remain significant health problems in the US and worldwide. IBD is most often associated with eastern European ancestry, and is less frequently reported in other populations of African origin e.g. African Americans ('AAs'). Whether AAs represent an important population with IBD in the US remains unclear since few studies have investigated IBD in communities with a majority representation of AA patients. The Louisiana State University Health Sciences Center in Shreveport (LSUHSC-S) is a tertiary care medical center, with a patient base composed of 58% AA and 39% Caucasian (W), ideal for evaluating racial (AA vs. W) as well and gender (M vs. F) influences on IBD.</p> <p>Methods</p> <p>In this retrospective study, we evaluated 951 visits to LSUHSC-S for IBD (between 2000 to 2008) using non-identified patient information based on ICD-9 medical record coding (Crohn's disease 'CD'-555.0- 555.9 and ulcerative colitis 'UC'-556.0-556.9).</p> <p>Results</p> <p>Overall, there were more cases of CD seen than UC. UC and CD affected similar ratios of AA and Caucasian males (M) and females (F) with a rank order of WF > WM > AAF > AAM. Interestingly, in CD, we found that annual visits per person was the highest in AA M (10.7 ± 1.7); significantly higher (* -p < 0.05) than in WM (6.3 ± 1.0). Further, in CD, the female to male (F: M) ratio in AA was significantly higher (*- p < 0.05) (1.9 ± 0.2) than in Caucasians (F:M = 1.3 ± 0.1) suggesting a female dominance in AACD; no differences were seen in UC F: M ratios.</p> <p>Conclusion</p> <p>Although Caucasians still represent the greatest fraction of IBD (~64%), AAs with IBD made up >1/3 (36.4%) of annual IBD cases from 2000-2008 at LSUHSC-S. Further studies on genetic and environments risks for IBD risk in AAs are needed to understand differences in presentation and progression in AAs and other 'non-traditional' populations.</p

    Helminth immunomodulation in autoimmune disease

    Get PDF
    Helminths have evolved to become experts at subverting immune surveillance. Through potent and persistent immune tempering, helminths can remain undetected in human tissues for decades. Redirecting the immunomodulating "talents" of helminths to treat inflammatory human diseases is receiving intensive interest. Here, we review therapies using live parasitic worms, worm secretions, and worm-derived synthetic molecules to treat autoimmune disease. We review helminth therapy in both mouse models and clinical trials and discuss what is known on mechanisms of action. We also highlight current progress in characterizing promising new immunomodulatory molecules found in excretory/secretory products of helminths and their potential use as immunotherapies for acute and chronic inflammatory diseases

    Induction of CD4+CD25+FOXP3+ Regulatory T Cells during Human Hookworm Infection Modulates Antigen-Mediated Lymphocyte Proliferation

    Get PDF
    Hookworm infection is considered one of the most important poverty-promoting neglected tropical diseases, infecting 576 to 740 million people worldwide, especially in the tropics and subtropics. These blood-feeding nematodes have a remarkable ability to downmodulate the host immune response, protecting themselves from elimination and minimizing severe host pathology. While several mechanisms may be involved in the immunomodulation by parasitic infection, experimental evidences have pointed toward the possible involvement of regulatory T cells (Tregs) in downregulating effector T-cell responses upon chronic infection. However, the role of Tregs cells in human hookworm infection is still poorly understood and has not been addressed yet. In the current study we observed an augmentation of circulating CD4+CD25+FOXP3+ regulatory T cells in hookworm-infected individuals compared with healthy non-infected donors. We have also demonstrated that infected individuals present higher levels of circulating Treg cells expressing CTLA-4, GITR, IL-10, TGF-β and IL-17. Moreover, we showed that hookworm crude antigen stimulation reduces the number of CD4+CD25+FOXP3+ T regulatory cells co-expressing IL-17 in infected individuals. Finally, PBMCs from infected individuals pulsed with excreted/secreted products or hookworm crude antigens presented an impaired cellular proliferation, which was partially augmented by the depletion of Treg cells. Our results suggest that Treg cells may play an important role in hookworm-induced immunosuppression, contributing to the longevity of hookworm survival in infected people

    Impact of early life exposures to geohelminth infections on the development of vaccine immunity, allergic sensitization, and allergic inflammatory diseases in children living in tropical Ecuador: the ECUAVIDA birth cohort study.

    Get PDF
    Background Geohelminth infections are highly prevalent infectious diseases of childhood in many regions of the Tropics, and are associated with significant morbidity especially among pre-school and school-age children. There is growing concern that geohelminth infections, particularly exposures occurring during early life in utero through maternal infections or during infancy, may affect vaccine immunogenicity in populations among whom these infections are endemic. Further, the low prevalence of allergic disease in the rural Tropics has been attributed to the immune modulatory effects of these infections and there is concern that widespread use of anthelmintic treatment in high-risk groups may be associated with an increase in the prevalence of allergic diseases. Because the most widely used vaccines are administered during the first year of life and the antecedents of allergic disease are considered to occur in early childhood, the present study has been designed to investigate the impact of early exposures to geohelminths on the development of protective immunity to vaccines, allergic sensitization, and allergic disease. Methods/Design A cohort of 2,403 neonates followed up to 8 years of age. Primary exposures are infections with geohelminth parasites during the last trimester of pregnancy and the first 2 years of life. Primary study outcomes are the development of protective immunity to common childhood vaccines (i.e. rotavirus, Haemophilus influenzae type B, Hepatitis B, tetanus toxoid, and oral poliovirus type 3) during the first 5 years of life, the development of eczema by 3 years of age, the development of allergen skin test reactivity at 5 years of age, and the development of asthma at 5 and 8 years of age. Potential immunological mechanisms by which geohelminth infections may affect the study outcomes will be investigated also. Discussion The study will provide information on the potential effects of early exposures to geohelminths (during pregnancy and the first 2 years of life) on the development of vaccine immunity and allergy. The data will inform an ongoing debate of potential effects of geohelminths on child health and will contribute to policy decisions on new interventions designed to improve vaccine immunogenicity and protect against the development of allergic diseases

    Mast cells: new therapeutic target in helminth immune modulation

    Get PDF
    Helminth infection and their secreted antigens have a protective role in many immune-mediated inflammatory disorders such as inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. However, studies have focused primarily on identifying immune protective mechanisms of helminth infection and their secreted molecules on dendritic cells and macrophages. Given that mast cells have been shown to be implicated in the pathogenesis and progression of many inflammatory disorders, their role should also be examined and considered as cellular target for helminth-based therapies. As there is a dearth of studies examining the interaction of helminth-derived antigens and mast cells, this review will focus on the role of mast cells during helminth infection and examine our current understanding of the involvement of mast cells in TH 1/TH 17-mediated immune disorders. In this context, potential mechanisms by which helminths could target the TH 1/TH 17 promoting properties of mast cells can be identified to unveil novel therapeutic mast cell driven targets in combating these inflammatory disorders
    corecore