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Mast cells: new therapeutic target in helminth immune modulation
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SUMMARY

Helminth infection and their secreted antigens have a protec-
tive role in many immune-mediated inflammatory disorders
such as inflammatory bowel disease, rheumatoid arthritis
and multiple sclerosis. However, studies have focused primar-
ily on identifying immune protective mechanisms of helminth
infection and their secreted molecules on dendritic cells and
macrophages. Given that mast cells have been shown to be
implicated in the pathogenesis and progression of many
inflammatory disorders, their role should also be examined
and considered as cellular target for helminth-based
therapies. As there is a dearth of studies examining the
interaction of helminth-derived antigens and mast cells, this
review will focus on the role of mast cells during helminth
infection and examine our current understanding of the
involvement of mast cells in TH1/TH17-mediated immune
disorders. In this context, potential mechanisms by which
helminths could target the TH1/TH17 promoting properties
of mast cells can be identified to unveil novel therapeutic
mast cell driven targets in combating these inflammatory
disorders.
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INTRODUCTION

Parasitic worms or helminths are highly successful
metazoans that infect an estimated third of the world’s
population, causing chronic infections (1). While helminth

infection is not associated with high mortality rates, high
degrees of morbidity are associated with affected popula-
tions. The disability-adjusted life years (DALYs) of
individuals is generally used as a measure of the burden of
helminth infection (2) and a report in 2010 estimated that
approximately 15 million DALYs were a direct result of
helminth infection (3–5). Helminths have developed
immunomodulatory strategies to evade host immune
responses enabling them to persist within their host for
prolonged periods of time. While studies have shown that
the immunomodulatory effects of helminth infection can
increase the susceptibility of a host to a number of sec-
ondary infections (6,7), they also have been demonstrated
to have a protective role in many noncommunicable
immune-mediated inflammatory disorders (8,9).
Helminth therapy is being explored as a viable treatment

of TH1/TH17-mediated inflammatory disorders such as
multiple sclerosis (10) and inflammatory bowel diseases,
including ulcerative colitis (11,12) and Crohn’s disease
(13). Human clinical trials to date have demonstrated that
this therapy is both safe and effective (10,11,14–16).
Furthermore, studies in mouse models such as experimen-
tal autoimmune encephalomyelitis (EAE) (17,18), type 1
diabetes (19), rheumatoid arthritis (20) and colitis (21)
have suggested that helminth infection and the molecules
it secretes are also protective in these disease models.
Therefore, understanding the immune protective properties
of helminths could offer potential therapeutic targets for a
wide range of diseases.
Mastocytosis is a pathological infiltration of mast cells

that is a common feature of helminth infection and a
major component of protective immunity against helminth
infection in the intestinal tract (22,23). Moreover, mast
cells are associated with many TH1/TH17 immune-
mediated disorders including multiple sclerosis, inflamma-
tory bowel disease and rheumatoid arthritis (24). While
studies have established the impact of helminth infection
on the ability of innate immune cells such as dendritic cell
and macrophages to drive inflammatory responses (25),

Correspondence: Dr. Sandra O’Neill, Parasite Immune
Modulation Group, Biotechnology, Faculty of Science and
Health, Dublin City University, Glasnevin, Dublin 9, Ireland
(e-mail: Sandra.ONeill@dcu.ie).
Disclosure: None.
Received: 7 August 2015
Accepted for publication: 2 November 2015

© 2015 John Wiley & Sons Ltd 45

Parasite Immunology, 2016, 38, 45–52 DOI: 10.1111/pim.12295



relatively few studies have examined the role of mast cells
in this context. This review will examine the role of mast
cells in helminth infection and inflammatory disorders
with a view to highlight mast cells as an important cellular
target in the development of helminth-derived therapies.

THE ROLE OF MAST CELLS IN HELMINTH
INFECTION

Helminth infections are associated with increased mast cell
numbers which are primarily redistributed to the site of
infection (26). Activated mast cells secrete serine proteases,
chymase and tryptase that have a direct cytotoxic effect on
the helminth (27,28). In addition, mast cell-derived mouse
mast cell protease 1 has been shown to loosen tight junc-
tion spaces in epithelial barrier, increases intestinal perme-
ability resulting in increased luminal flow, leading to the
expulsion of the parasite (29). However, the importance of
mast cells in clearance is species specific (8). While the
ablation of mast cells in murine models of Trichuris muris
is not critical to its expulsion (30), there is strong evidence
to support the involvement of mast cells in intestinal
nematode infection (29). In vivo studies of Heligmoso-
moides polygyrus infection with mast cell-deficient KitW/
KitW�v mice show higher rates of nematode fecundity,
compared to wild-type controls, highlighting their
importance in intestinal helminth immunity (31).
Enhanced mast cell number were associated with the
clearance of Strongloides ratti, Trichinella spiralis,
Nippostrongylus brasiliensis and Strongyloides ratti in
rodent models, further implicating their importance
(29,32,33).
The role of mast cells in tissue dwelling helminth infec-

tion, such as Schistosomais or Fasciolosis is not clearly
understood, despite mast cells being implicated with both
the acute and chronic stages of the infection (34). The
early stages of Schistosoma infection are predominately
skewed towards TH1 immune responses (35). Given that
mast cells are an important source of TH1 inflammatory
cytokines, their relative contributions to the development
of TH1 immune responses at this stage remains unclear.
Similarly, mast cells are observed in the chronic stages of
Schistosoma infection, when TH2/Treg immune responses
are predominant (36), again implicating an important role
for mast cells in shaping the adaptive immune response.
Increased mast cell infiltration in the liver remains a key
feature of Fasciola hepatica infection (37,38), and in
rodent models, this is dominated by TH2/Treg responses
within hours of infection.
Extensive migration is a common feature with tissue

dwelling helminths, F. hepatica for example, migrates from
the intestine to the peritoneal cavity, finally residing in the

bile ducts of the liver (39). This migration is correlated
with increased mast cell infiltration in the gut mucosa,
peritoneal cavity and liver (40–42). This increased mast
cell population may be involved in promoting the balance
between inflammation and wound healing as mast cells
secrete mediators, such as histamine, serotonin, enzymes
and cytokines that are important in inducing fibroblast
proliferation; a marker for wound healing responses, while
also increasing vascular permeability and recruiting
neutrophils (43,44). In mast cell-deficient mice, wound clo-
sure is significantly impaired compared to normal or mast
cell reconstructed mice (44).
During helminth infection, the activation of mast cells

is mainly studied in the context of adaptive TH2 immune
responses. Protective immunity to helminths is thought to
be mediated by the TH2 subset of CD4+ T cells; however,
mast cells are observed in the early stages of infection
suggesting that these cells may have an important role to
play in shaping the TH2 immune response. Cytokines,
namely IL-4 and IL-13, secreted by TH2 cells direct B-cells
to produce helminth-specific IgE antibody (8,45). Mast
cells express the high affinity FceRI receptor, which in the
presence of helminth-specific antigens and IgE antibody
induce mast cell degranulation, resulting in the release of
inflammatory mediators such as histamine, cytokines and
chemokines (46,47).
The release of these mediators by mast cells was shown

to contribute to the development of TH2 immune
responses towards gastrointestinal helminths by activating
other cells involved in TH2 immunity, (48). A recent study
demonstrated the importance of mast cell crosstalk in the
early stages of H. polygyrus infection. TH2 immune
responses and the clearance of the helminth was associ-
ated with mast cell released IL-25, IL-33 and thymic stro-
mal lymphopoietins (TSLP) (49). Wild-type mice were
characterized by high expression levels of TH2 cytokines,
namely IL-4, IL-5, IL-9, IL-10 and IL-13. However mast
cell-deficient KitW/KitW�v mice showed a significantly
impaired TH2 response. Mast cell-derived IL-25, IL-33
and TSLP was shown to be crucial for driving TH2 cell
priming through the activation of dendritic cells (48).
Other studies have demonstrated that mast cells can indi-
rectly modulate T-cell responses by crosstalking with den-
dritic cells, influencing their maturation (50). In contact
hypersensitivity mouse models, activated dendritic cells
bind to mast cells, promoting Ca2+ influx and the induc-
tion of tumour necrosis factor alpha (TNF-a) production.
Activated mast cell-derived TNF-a was also shown to
induce the in vivo migration of DCs (51).
Further work is required to define the phenotype of

mast cells that promotes early TH2 immune responses in
the absence of antigen-specific IgE. The definition of these
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subsets could be based on analogy to dendritic cells and
macrophages in helminth infection. Helminths alterna-
tively activate innate immune cells, which display unique
phenotypical and functional properties. Alternatively acti-
vated dendritic cells have been shown to display partial
maturation (52,53) characterized by low expression of the
co-stimulatory, major histocompatibility complex (MHC)
molecules and a restricted cytokine and chemokine secre-
tion profile compared to bacterial activated dendritic cells.
Alternatively activated macrophages have also been shown
to exhibit an M2-phenotype characterized by the expres-
sion of ARG1, YM1/2, RELMa genes and secretion of
TGF-b, PGE2 and IL-10. The alternate activation of these
cell populations contributes to the induction of TH2
responses (54,55).
While there is strong evidence to support the influence

mast cells can have in inducing TH1, TH17 and TH2
immune responses (50), a subset of mast cells that drive
Treg immune responses has yet to be defined. However,
considering mast cells secrete IL-10 and TGF-b, two
cytokines important in the induction and maintenance of
Treg cells, further work is required to examine whether
mast cells contribute to tolerogenic immune response
(56,57).

POSITIVE BYSTANDER EFFECTS OF
HELMINTHS UPON TH1/TH17
INFLAMMATORY DISORDERS

Numerous studies in helminth endemic regions reported a
reduced risk of individuals developing TH1/TH17-mediated
autoimmunity or inflammatory bowel disease (IBD) at the
population level (58–60) and this led to the hypothesis that
helminths conferred protection against inflammatory
disorders. Leading on from these initial observations and
overwhelming evidence from experimental models,
helminth therapy is currently being used in phase I clinical
trials as a novel approach for the treatment of a range of
inflammatory disorders. Initial reports from these clinical
trials have demonstrated that treatments are safe (10).
While helminth therapy was shown as a good therapeutic
candidate in individuals with multiple sclerosis; results
were less promising for allergic rhinitis (61). There is also
still debate to the effectiveness of helminth therapy on
treating IBD. Despite positive results in initial studies
using Trichuris suis ova to treat Ulcerative colitis or
Crohn’s disease (62), a more recent study in a large clini-
cal trial of patients with Crohn’s disease, showed no signs
of improving disease activity index or remission rates and
was subsequently stopped due to a lack of efficacy (63,64).
While human trials with worm therapy are a new

development, there is overwhelming evidence in experi-

mental models that helminth infection and the products
they release exert immune-suppressive effects that prevent
the initiation and perpetuation of inflammatory disorders.
Infection with Schistosoma mansoni reduces the incidence
of autoimmune disease in mice by 50% (65) while gas-
trointestinal nematodes can suppress innate and adaptive
pro-inflammatory immune responses, which are linked to
the suppression of inflammation associated with IBD
(66). Hymenolepsis diminuta was shown to have beneficial
effect in a murine model of colitis while T. spiralis infec-
tion was observed to have a protective effect in the same
model, reviewed elsewhere (60,67).
Similar to infection, helminth-derived excretory–secre-

tory (ES) products and extracts have been shown to have
a protective effect in the treatment of a range of inflam-
matory disorders such as murine arthritis, allergy and dia-
betes which have also been extensively reviewed elsewhere
(68-71). The use of these parasitic antigens or synthetic
analogues may allow for the development of specific and
or more effective drugs to cure inflammatory disorders.

MAST CELLS, TH1/TH17 AND INFLAMMATORY
DISORDERS

Similar to dendritic cells and macrophages, upon activa-
tion mast cells can elicit immune responses, by interacting
with other cells through adhesion molecules, co-stimula-
tory/co-inhibitory molecules and the secretion of cytoki-
nes (72). MHC class I and II play central roles in
antigen presentation. Mast cells express high levels of
MHCI but very low levels of MHCII, although this can
be up-regulated by LPS or IFN-c stimulation, or during
bacterial infection (73). Expression of ICAM-1, VCAM-
1, OX40L, CD40L, LFA-1 and many other molecules by
mast cells would suggest a broad ability to directly medi-
ate T-cell activation, although the mechanism is yet
unclear (74,75).
Mast cells indirectly activate the adaptive TH1

immune system by secreted cytokines, chemokines and
also acting as antigen presenting cells. These mast cells
are characterized by the lack of degranulation and the
production of pro-inflammatory mediators, such as
TNF-a. These cells have been shown to also contribute
to pathology in inflammatory disorders (26,76). Mast
cells are therefore thought to be a potential novel cellu-
lar target in the treatment of a range of TH1/TH17
immune-mediated diseases where mast cells contribute to
pathology (26). Studies using mast cell knockout mice
show a critical role for mast cells in many inflammatory
disorders such as multiple sclerosis (MS), rheumatoid
arthritis (RA) and inflammatory bowel disease (IBD)
(77,78).
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In experimental autoimmune encephalitis (EAE), the
murine model for MS, the release of pro-inflammatory
mediators by mast cells was shown to contribute to the
severity of disease (79), while others have implicated mast
cells in the induction of the disease rather than as effector
cells contributing to disease severity (80). Studies in mast
cell-deficient mice showed mast cell-derived pro-inflamma-
tory cytokines, such as TNF-a, are integral to the develop-
ment of EAE (81,82).
In collagen-induced murine RA models, mast cells were

shown to accumulate and de-granulate in the affected
joints (83). Mast cell-deficient mice are resistant to anti-
glucose-6-phosphate isomerize (GPI) antibody-induced
RA, while wild type and mast cell reconstituted mice
retain their sensitivity (84). The precise pathogenesis of
RA is still unclear. TH1/TH17 cells are currently consid-
ered to be the key participants in the pathophysiology of
this disease (85–87), and mast cells may have a critical
role in skewing lymphocytes towards TH1/TH17 responses
and in the development of these pathological processes
(88–90).
Enhanced mast cell numbers have been observed in ani-

mal models of IBD at the site of inflammation, where
mast cell associated inflammatory mediators are found in

abundance and are positively linked with pathogenesis and
disease progression. In these studies, mast cells were
shown to undergo degranulation, release histamine and
pro-inflammatory cytokines, such as IL-6 and TNF-a
(91). Considering the longevity of these cells, mast cells
could exert influence in IBD development and progression
at multiple checkpoints. In contrast, studies based on IL-
10-deficient mice that are highly susceptible to developing
IBD, demonstrated that mast cell depletion enhanced sus-
ceptibility suggesting that mast cells may have a protective
role (92).
Studies have shown that mast cell inhibitors have thera-

peutic potential in the treatment of IBD (93). While there
still remains conflicting data on the involvement and dis-
tribution of mast cells in the intestine of patients present-
ing with ulcerative colitis (94–96), it was demonstrated by
Kurosawa and Nagai that ulcerative colitis patients were
successfully treated with anti-allergic drugs which targeted
mast cell activation and TH2-polarized immune responses
(97). The role of mast cells is alluded to, by the elevation
of UC severity in patients treated with drugs which
directly target mast cell activation. Mast cells play a
prominent role in inflammatory disorders, and yet there is
a dearth of studies examining the potential of helminths

Figure 1 Potential mechanisms of action of
Helminth-treated mast cells: evidence in the
literature would suggest that helminths
could have the potential modes of action on
mast cells that would lead to the
suppression of Th1/Th17 immune response.
1. Inhibiting mast cell proliferation (42).
2. Suppressing TLR-induced cytokine
production (18,53). 3. Promoting regulatory
cytokines (19,25,54). 4. Inhibiting TLR
pathway (52,53). 5. Inducing Th2 promoting
cytokines (18,19). 6. Inducing suppressive
phenotypes (104).
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to modulate these cells as targets for helminth-derived
therapies. This highlights the need of further studies.

MAST CELLS AS THERAPEUTIC TARGETS FOR
HELMINTH THERAPY

A strong rationale exists to analyse mast cells as cellular
targets for helminth-based therapies. We have shown that
helminth-derived molecules namely F. hepatica tegumental
coat antigens (FhTeg) target mast cells inhibiting their
ability to drive TH1 immune responses. FhTeg suppress
LPS-induced NF-jB and MAPK pathway (ERK) activa-
tion in mast cells (98). NF-jB and MAPKs are important
signalling molecules leading to the expression of ICAM1
(99) and the secretion of pro-inflammatory cytokines. We
demonstrated that the expression of ICAM1 was impor-
tant in mast cell-T-cell communication, as inhibiting its
expression in conjunction with the release of pro-inflam-
matory cytokines blocked the induction of TH1 responses
(98). This inhibition of TH1 immune responses is thought
to be due in part by the expression of suppressor of cyto-
kine signalling-3 (SOCS3) (a pathway not previously
described in mast cells) (98), a negative regulator of TH1/
TH17 inflammatory processes (100). We also demonstrated
that FhTeg does not induce mast cell proliferation while
promoting migration of mast cells in vitro suggesting that
the increase in mast cell numbers observed in the peri-
toneal cavity and liver of mice may be the result of mast
cell migration and not proliferation (42).
Some other studies on T. spiralis have also demonstrated

the immunomodulatory effects of helminths on mast cells.
The T. spiralis-secreted molecule ES-62 was shown to block
calcium mobilization and bind toll-like receptor 4, inhibit-
ing downstream signalling of NF-jB, antagonizing mast cell
degranulation (47). T. spiralis-secreted molecules have also
been shown to selectively modulate the secretion profiles of
activated mast cells while T. spiralis muscle larval antigens
were demonstrated to induce the release of histamine
but inhibit b-hexosaminidase in mast cells (101,102).
T. spiralis-secreted enzymes were also shown to inhibit
mouse mast cell protease 1 (103).

There is strong evidence in the literature demonstrating
the mechanisms by which helminth infection and their
secreted molecules target innate immune cells. These
mechanisms are well described for macrophages and den-
dritic cells, many of which we have discussed are shared
by mast cells. While there are relatively few studies, we
can hypothesise the potential modulatory interaction
(Figure 1). Given the prominent role mast cells play dur-
ing inflammatory disorders and the interest in using para-
sitic helminths to treat these disorders, future studies
should be focused on the mechanisms used by helminths
to suppress mast cell responses for the potential discovery
of novel therapies.

SUMMARY

In summary, mast cells are involved in multiple inflamma-
tory and autoimmune disorders (26), where TNF-a secre-
tion from these cells is critical to disease pathology
(81,82). It is therefore possible that the protective effect of
helminths against immune disorders may be the result of
its molecules directly blocking the release of pro-inflam-
matory mediators from mast cells. These findings might
lead to the development of a therapeutic inhibitors for
pathogenic mast cell phenotypes.
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