13 research outputs found

    Population characteristics of Shovelnose Sturgeon during low- and high-water conditions in the lower Platte River, Nebraska

    Get PDF
    Cycles of low- and high-water periods (i.e., years) in river systems are natural occurrences, but understanding how cyclical climatological patterns affect fishes, especially long-lived species, is unclear. We assessed Shovelnose Sturgeon population dynamics between a period of low- (2001-2004) and high- (2009-2012) water years in the lower Platte River, Nebraska. Low-flow periods in the lower Platte River can cause disconnection(s) between upstream and downstream reaches resulting in isolated pools and elevated water temperatures leading to stressful situations for aquatic life and possible mortality. Our data show no measurable differences between key population indices between flow condition periods which is consistent with current paradigms for long-lived fish species. Shovelnose Sturgeon relative weights were generally \u3e 80 during both low- and high-water periods and the size structure did not differ between the two periods. Shovelnose Sturgeon abundances, however, were greater during high-water conditions compared to low-water conditions (Kruskal-Wallis: χ2 = 6.15, d.f. = 1, P = 0.01). Shovelnose Sturgeon may have migrated to more suitable habitats during low-water periods to seek refuge allowing these individuals to return during more suitable conditions. Shovelnose Sturgeon and other riverine fish have evolved in a variable environment and have been able to endure relatively minor anthropogenic changes within the lower Platte River. Rivers like the lower Platte River that have retained much of their original physical features and flow regimes are likely key components for the resistance and resilience of riverine species. However, as alterations to landscapes continue and uncertainty exists surrounding future climate predictions, it is unknown how these riverine species will be able to adapt to future changes. The reduction in anthropogenic changes that disrupt flow regimes and increasing connectivity among river systems could provide more fish refuge during stressful conditions helping to protect these riverine species

    Divergent density feedback control of migratory predator recovery following sex-biased perturbations

    Get PDF
    Uncertainty in risks posed by emerging stressors such as synthetic hormones im-pedes conservation efforts for threatened vertebrate populations. Synthetic hor-mones often induce sex-biased perturbations in exposed animals by disrupting gonad development and early life-history stage transitions, potentially diminishing per capita reproductive output of depleted populations and, in turn, being manifest as Allee effects. We use a spatially explicit biophysical model to evaluate how sex-biased perturbation in life-history traits of individuals (maternal investment in egg production and male-skewed sex allocation in offspring) modulates density feedback control of year-class strength and recovery trajectories of a long-lived, migratory fish—shovelnose sturgeon (Scaphirhynchus platorynchus)—under spatially and tempo-rally dynamic synthetic androgen exposure and habitat conditions. Simulations show that reduced efficiency of maternal investment in gonad development prolonged maturation time, increased the probability of skipped spawning, and, in turn, shrunk spawner abundance, weakening year-class strength. However, positive density feed-back disappeared (no Allee effect) once the exposure ceased. By contrast, responses to the demographic perturbation manifested as strong positive density feedback; an abrupt shift in year-class strength and spawner abundance followed after more than two decades owing to persistent negative population growth (a strong Allee effect), reaching an alternative state without any sign of recovery. When combined with the energetic perturbation, positive density feedback of the demographic perturbation was dampened as extended maturation time reduced the frequency of producing male-biased offspring, allowing the population to maintain positive growth rate (a weak Allee effect) and gradually recover. The emergent patterns in long-term population projections illustrate that sex-biased perturbation in life-history traits can interactively regulate the strength of density feedback in depleted populations such as Scaphirhynchus sturgeon to further diminish reproductive capacity and abundance, posing increasingly greater conservation challenges in chemically altered river scapes

    Population characteristics of Shovelnose Sturgeon during low- and high-water conditions in the lower Platte River, Nebraska

    Get PDF
    Cycles of low- and high-water periods (i.e., years) in river systems are natural occurrences, but understanding how cyclical climatological patterns affect fishes, especially long-lived species, is unclear. We assessed Shovelnose Sturgeon population dynamics between a period of low- (2001-2004) and high- (2009-2012) water years in the lower Platte River, Nebraska. Low-flow periods in the lower Platte River can cause disconnection(s) between upstream and downstream reaches resulting in isolated pools and elevated water temperatures leading to stressful situations for aquatic life and possible mortality. Our data show no measurable differences between key population indices between flow condition periods which is consistent with current paradigms for long-lived fish species. Shovelnose Sturgeon relative weights were generally \u3e 80 during both low- and high-water periods and the size structure did not differ between the two periods. Shovelnose Sturgeon abundances, however, were greater during high-water conditions compared to low-water conditions (Kruskal-Wallis: χ2 = 6.15, d.f. = 1, P = 0.01). Shovelnose Sturgeon may have migrated to more suitable habitats during low-water periods to seek refuge allowing these individuals to return during more suitable conditions. Shovelnose Sturgeon and other riverine fish have evolved in a variable environment and have been able to endure relatively minor anthropogenic changes within the lower Platte River. Rivers like the lower Platte River that have retained much of their original physical features and flow regimes are likely key components for the resistance and resilience of riverine species. However, as alterations to landscapes continue and uncertainty exists surrounding future climate predictions, it is unknown how these riverine species will be able to adapt to future changes. The reduction in anthropogenic changes that disrupt flow regimes and increasing connectivity among river systems could provide more fish refuge during stressful conditions helping to protect these riverine species

    Brain Activity in the Play of Dominant Strategy and Mixed Strategy Games

    No full text
    We conjecture that the thought processes used to solve dominant strategy games and mixed strategy games are quite distinct. Two‐person games with dominant strategies can be treated as simple decision problems that involve no assessment of one\u27s partner. By contrast, two‐person games with mixed strategies require that one think about one\u27s partner. We measure differences in electroencephalogram (EEG) activity while a human subject is playing two‐person games. We time‐lock the EEG to a common event and use the average across many trials and subjects to find an Event Related Potential (ERP) associated with the common event. The ERP is the brain\u27s response to events—in this case our different games. Our findings lend modest support for the idea that subjects respond to types of games differently
    corecore