1,809 research outputs found

    Characterizing the Galactic Gravitational Wave Background with LISA

    Full text link
    We present a Monte Carlo simulation for the response of the Laser Interferometer Space Antenna (LISA) to the galactic gravitational wave background. The simulated data streams are used to estimate the number and type of binary systems that will be individually resolved in a 1-year power spectrum. We find that the background is highly non-Gaussian due to the presence of individual bright sources, but once these sources are identified and removed, the remaining signal is Gaussian. We also present a new estimate of the confusion noise caused by unresolved sources that improves on earlier estimates.Comment: 32 pages, 14 figures. Version to appear in PR

    Influence of hyperhomocysteinemia on the cellular redox state - Impact on homocysteine-induced endothelial dysfunction

    Get PDF
    Hyperhomocysteinemia is an independent risk factor for the development of atherosclerosis. An increasing body of evidence has implicated oxidative stress as being contributory to homocysteines deleterious effects on the vasculature. Elevated levels of homocysteine may lead to increased generation of superoxide by a biochemical mechanism involving nitric oxide synthase, and, to a lesser extent, by an increase in the chemical oxidation of homocysteine and other aminothiols in the circulation. The resultant increase in superoxide levels is further amplified by homocysteinedependent alterations in the function of cellular antioxidant enzymes such as cellular glutathione peroxidase or extracellular superoxide dismutase. One direct clinical consequence of elevated vascular superoxide levels is the inactivation of the vasorelaxant messenger nitric oxide, leading to endothelial dysfunction. Scavenging of superoxide anion by either superoxide dismutase or 4,5-dihydroxybenzene 1,3-disulfonate (Tiron) reverses endothelial dysfunction in hyperhomocysteinemic animal models and in isolated aortic rings incubated with homocysteine. Similarly, homocysteineinduced endothelial dysfunction is also reversed by increasing the concentration of the endogenous antioxidant glutathione or overexpressing cellular glutathione peroxidase in animal models of mild hyperhomocysteinemia. Taken together, these findings strongly suggest that the adverse vascular effects of homocysteine are at least partly mediated by oxidative inactivation of nitric oxide

    A FABP4-PPARγ signaling axis regulates human monocyte responses to electrophilic fatty acid nitroalkenes

    Get PDF
    Nitro-fatty acids (NO2-FA) are electrophilic lipid mediators derived from unsaturated fatty acid nitration. These species are produced endogenously by metabolic and inflammatory reactions and mediate anti-oxidative and anti-inflammatory responses. NO2-FA have been postulated as partial agonists of the Peroxisome Proliferator-Activated Receptor gamma (PPARγ), which is predominantly expressed in adipocytes and myeloid cells. Herein, we explored molecular and cellular events associated with PPARγ activation by NO2-FA in monocytes and macrophages. NO2-FA induced the expression of two PPARγ reporter genes, Fatty Acid Binding Protein 4 (FABP4) and the scavenger receptor CD36, at early stages of monocyte differentiation into macrophages. These responses were inhibited by the specific PPARγ inhibitor GW9662. Attenuated NO2-FA effects on PPARγ signaling were observed once cells were differentiated into macrophages, with a significant but lower FABP4 upregulation, and no induction of CD36. Using in vitro and in silico approaches, we demonstrated that NO2-FA bind to FABP4. Furthermore, the inhibition of monocyte FA binding by FABP4 diminished NO2-FA-induced upregulation of reporter genes that are transcriptionally regulated by PPARγ, Keap1/Nrf2 and HSF1, indicating that FABP4 inhibition mitigates NO2-FA signaling actions. Overall, our results affirm that NO2-FA activate PPARγ in monocytes and upregulate FABP4 expression, thus promoting a positive amplification loop for the downstream signaling actions of this mediator.Fil: Lamas Bervejillo, M.. Universidad de la República; UruguayFil: Bonanata, Julieta. Universidad de la República; UruguayFil: Franchini, Gisela Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Richeri, A.. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFil: Marqués, J.M.. Universidad de la República; UruguayFil: Freeman, B.A.. University of Pittsburgh; Estados UnidosFil: Schopfer, Francisco Jose. University of Pittsburgh; Estados UnidosFil: Coitiño, E.L.. Universidad de la República; UruguayFil: Córsico, Betina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Rubbo, H.. Universidad de la República; UruguayFil: Ferreira, A.M.. Universidad de la República; Urugua

    Extreme mass ratio inspiral rates: dependence on the massive black hole mass

    Full text link
    We study the rate at which stars spiral into a massive black hole (MBH) due to the emission of gravitational waves (GWs), as a function of the mass M of the MBH. In the context of our model, it is shown analytically that the rate approximately depends on the MBH mass as M^{-1/4}. Numerical simulations confirm this result, and show that for all MBH masses, the event rate is highest for stellar black holes, followed by white dwarfs, and lowest for neutron stars. The Laser Interferometer Space Antenna (LISA) is expected to see hundreds of these extreme mass ratio inspirals per year. Since the event rate derived here formally diverges as M->0, the model presented here cannot hold for MBHs of masses that are too low, and we discuss what the limitations of the model are.Comment: Accepted to CQG, special LISA issu

    Gravitomagnetic corrections on gravitational waves

    Full text link
    Gravitational waveforms and production could be considerably affected by gravitomagnetic corrections considered in relativistic theory of orbits. Beside the standard periastron effect of General Relativity, new nutation effects come out when c^{-3} corrections are taken into account. Such corrections emerge as soon as matter-current densities and vector gravitational potentials cannot be discarded into dynamics. We study the gravitational waves emitted through the capture, in the gravitational field of massive binary systems (e.g. a very massive black hole on which a stellar object is inspiralling) via the quadrupole approximation, considering precession and nutation effects. We present a numerical study to obtain the gravitational wave luminosity, the total energy output and the gravitational radiation amplitude. From a crude estimate of the expected number of events towards peculiar targets (e.g. globular clusters) and in particular, the rate of events per year for dense stellar clusters at the Galactic Center (SgrA*), we conclude that this type of capture could give signatures to be revealed by interferometric GW antennas, in particular by the forthcoming laser interferometer space antenna LISA.Comment: 14 pages, 7 figure

    Effects of Maté Tea Intake on ex Vivo LDL Peroxidation Induced by Three Different Pathways

    Get PDF
    Yerba maté (Ilex paraguariensis) is a native South America plant widely consumed as different beverages. Yerba maté leaves contains high concentrations of polyphenols that are responsible for its high in vitro and in vivo antioxidant activity. The in vivo antioxidant properties vis a vis LDL particles has not yet been studied for maté tea, the roasted yerba maté product. The aim of this study was to evaluate the antioxidant activity of maté tea ingestion ex vivo on human LDL. Fasting peripheral venous blood samples of healthy women were taken in three different times: before drinking the tea, one hour later and after one week (7 days) of daily consumption of maté tea. The isolated LDL was oxidized by three different pathways [copper (CuSO4), lipoxygenase and peroxynitrite (SIN-1)]. Conjugated dienes and structural modifications on LDL were evaluated. Ingestion of maté tea increased LDL resistance towards ex vivo copper oxidation, but did not alter the peroxidation pattern when SIN-1 or lipoxygenase were used as oxidant

    Far-Infrared Therapy Induces the Nuclear Translocation of PLZF Which Inhibits VEGF-Induced Proliferation in Human Umbilical Vein Endothelial Cells

    Get PDF
    Many studies suggest that far-infrared (FIR) therapy can reduce the frequency of some vascular-related diseases. The non-thermal effect of FIR was recently found to play a role in the long-term protective effect on vascular function, but its molecular mechanism is still unknown. In the present study, we evaluated the biological effect of FIR on vascular endothelial growth factor (VEGF)-induced proliferation in human umbilical vein endothelial cells (HUVECs). We found that FIR ranging 3∼10 µm significantly inhibited VEGF-induced proliferation in HUVECs. According to intensity and time course analyses, the inhibitory effect of FIR peaked at an effective intensity of 0.13 mW/cm2 at 30 min. On the other hand, a thermal effect did not inhibit VEGF-induced proliferation in HUVECs. FIR exposure also inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinases in HUVECs. FIR exposure further induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO generation in VEGF-treated HUVECs. Both VEGF-induced NO and reactive oxygen species generation was involved in the inhibitory effect of FIR. Nitrotyrosine formation significantly increased in HUVECs treated with VEGF and FIR together. Inhibition of phosphoinositide 3-kinase (PI3K) by wortmannin abolished the FIR-induced phosphorylation of eNOS and Akt in HUVECs. FIR exposure upregulated the expression of PI3K p85 at the transcriptional level. We further found that FIR exposure induced the nuclear translocation of promyelocytic leukemia zinc finger protein (PLZF) in HUVECs. This induction was independent of a thermal effect. The small interfering RNA transfection of PLZF blocked FIR-increased PI3K levels and the inhibitory effect of FIR. These data suggest that FIR induces the nuclear translocation of PLZF which inhibits VEGF-induced proliferation in HUVECs

    Inhaled nitric oxide alleviates hyperoxia suppressed phosphatidylcholine synthesis in endotoxin-induced injury in mature rat lungs

    Get PDF
    BACKGROUND: We investigated efficacy of inhaled nitric oxide (NO) in modulation of metabolism of phosphatidylcholine (PC) of pulmonary surfactant and in anti-inflammatory mechanism of mature lungs with inflammatory injury. METHODS: Healthy adult rats were divided into a group of lung inflammation induced by i.v. lipopolysaccharides (LPS) or a normal control (C) for 24 h, and then exposed to: room air (Air), 95% oxygen (O), NO (20 parts per million, NO), both O and NO (ONO) as subgroups, whereas [(3)H]-choline was injected i.v. for incorporation into PC of the lungs which were processed subsequently at 10 min, 4, 8, 12 and 24 h, respectively, for measurement of PC synthesis and proinflammatory cytokine production. RESULTS: LPS-NO subgroup had the lowest level of labeled PC in total phospholipids and disaturated PC in bronchoalveolar lavage fluid and lung tissue (decreased by 46–59%), along with the lowest activity of cytidine triphosphate: phosphocholine cytidylyltransferase (-14–18%) in the lungs, compared to all other subgroups at 4 h (p < 0.01), but not at 8 and 12 h. After 24-h, all LPS-subgroups had lower labeled PC than the corresponding C-subgroups (p < 0.05). LPS-ONO had higher labeled PC in total phospholipids and disaturated PC, activity of cytidylyltransferase, and lower activity of nuclear transcription factor-κB and expression of proinflammatory cytokine mRNA, than that in the LPS-O subgroup (p < 0.05). CONCLUSION: In LPS-induced lung inflammation in association with hyperoxia, depressed PC synthesis and enhanced proinflammatory cytokine production may be alleviated by iNO. NO alone only transiently suppressed the PC synthesis as a result of lower activity of cytidylyltransferase

    A search for resonant production of ttˉt\bar{t} pairs in $4.8\ \rm{fb}^{-1}ofintegratedluminosityof of integrated luminosity of p\bar{p}collisionsat collisions at \sqrt{s}=1.96\ \rm{TeV}$

    Get PDF
    We search for resonant production of tt pairs in 4.8 fb^{-1} integrated luminosity of ppbar collision data at sqrt{s}=1.96 TeV in the lepton+jets decay channel, where one top quark decays leptonically and the other hadronically. A matrix element reconstruction technique is used; for each event a probability density function (pdf) of the ttbar candidate invariant mass is sampled. These pdfs are used to construct a likelihood function, whereby the cross section for resonant ttbar production is estimated, given a hypothetical resonance mass and width. The data indicate no evidence of resonant production of ttbar pairs. A benchmark model of leptophobic Z \rightarrow ttbar is excluded with m_{Z'} < 900 GeV at 95% confidence level.Comment: accepted for publication in Physical Review D Sep 21, 201

    Proceedings of the 4th BEAT-PCD Conference and 5th PCD Training School

    Get PDF
    Primary ciliary dyskinesia (PCD) is an inherited ciliopathy leading to chronic suppurative lung disease, chronic rhinosinusitis, middle ear disease, sub-fertility and situs abnormalities. As PCD is rare, it is important that scientists and clinicians foster international collaborations to share expertise in order to provide the best possible diagnostic and management strategies. ‘Better Experimental Approaches to Treat Primary Ciliary Dyskinesia’ (BEAT-PCD) is a multidisciplinary network funded by EU COST Action (BM1407) to coordinate innovative basic science and clinical research from across the world to drive advances in the field. The fourth and final BEAT-PCD Conference and fifth PCD Training School were held jointly in March 2019 in Poznan, Poland. The varied program of plenaries, workshops, break-out sessions, oral and poster presentations were aimed to enhance the knowledge and skills of delegates, whilst also providing a collaborative platform to exchange ideas. In this final BEAT-PCD conference we were able to build upon programmes developed throughout the lifetime of the COST Action. These proceedings report on the conference, highlighting some of the successes of the BEAT-PCD programme
    • …
    corecore