9 research outputs found

    Driver mutations of cancer epigenomes

    Get PDF

    DNA Methylation: Biological Implications and Modulation of Its Aberrant Dysregulation

    No full text
    The alteration of the DNA methylation pattern is often related to the onset of diseases based on epigenetic dysregulation, primarily cancer. In this scenery the development of DNA methyltransferase inhibitors is one of the most attractive challenges for anticancer therapy. The present chapter proposes a comprehensive classification of the DNA methyltransferase inhibitors known in literature, on the basis of their natural or synthetic nature and their mechanism of action

    Direct effects of non-antifungal agents used in cancer chemotherapy and organ transplantation on the development and virulence of Candida and Aspergillus species

    No full text
    Conventional antineoplastic, novel immunosuppressive agents and antibiotics used in cancer treatment can directly affect the growth, development and virulence of Candida and Aspergillus species. Cytotoxic and cisplatin compounds have anti-Candida activity and may be synergistic with antifungal drugs; they also inhibit Candida and Aspergillus filamentation/conidation and effect increased virulence in vitro. Glucocorticoids enhance Candida adherence to epithelial cells, germination in serum and in vitro secretion of phospholipases and proteases, as well as growth of A. fumigatus. Calcineurin and target of rapamycin inhibitors perturb Candida and Aspergillus morphogenesis, stress responses and survival in serum, reduce azole tolerance in Candida, but yield conflicting in vivo data. Inhibition of candidal heat shock protein 90 and candidal-specific histone deacetylase represent feasible therapeutic approaches for candidiasis. Tyrosine kinase inhibitors inhibit fungal cell entry into epithelial cells and phagocytosis. Quinolone and other antibiotics may augment activity of azole and polyene agents. The correlation of in vitro effects with clinically meaningful in vivo systems is warranted

    Emerging of lysine demethylases (KDMs): From pathophysiological insights to novel therapeutic opportunities

    No full text
    corecore