362 research outputs found
Sulfur Mustard Induces Markers of Terminal Differentiation and Apoptosis in Keratinocytes Via a Ca2+-Calmodulin and Caspase-Dependent Pathway
Sulfur mustard (SM) induces vesication via poorly understood pathways. The blisters that are formed result primarily from the detachment of the epidermis from the dermis at the level of the basement membrane. In addition, there is toxicity to the basal cells, although no careful study has been performed to determine the precise mode of cell death biochemically. We describe here two potential mechanisms by which SM causes basal cell death and detachment: namely, induction of terminal differentiation and apoptosis. In the presence of 100 μM SM, terminal differentiation was rapidly induced in primary human keratinocytes that included the expression of the differentiation-specific markers K1 and K10 and the cross-linking of the cornified envelope precursor protein involucrin. The expression of the attachment protein, fibronectin, was also reduced in a time- and dose-dependent fashion. Features common to both differentiation and apoptosis were also induced in 100 μM SM, including the rapid induction of p53 and the reduction of Bcl-2. At higher concentrations of SM (i.e., 300 μM), formation of the characteristic nucleosome-sized DNA ladders, TUNEL-positive staining of cells, activation of the cysteine protease caspase-3/apopain, and cleavage of the death substrate poly(ADP-ribose) polymerase, were observed both in vivo and in vitro. Both the differentiation and the apoptotic processes appeared to be calmodulin dependent, because the calmodulin inhibitor W-7 blocked the expression of the differentiation-specific markers, as well as the apoptotic response, in a concentration-dependent fashion. In addition, the intracellular Ca2+ chelator, BAPTA-AM, blocked the differentiation response and attenuated the apoptotic response. These results suggest a strategy for designing inhibitors of SM vesication via the Ca2+-calmodulin or caspase-3/PARP pathway
Inorganic Polyphosphates Are Important for Cell Survival and Motility of Human Skin Keratinocytes and Play a Role in Wound Healing
Inorganic polyphosphate (polyP) is a simple ancient polymer of linear chains of orthophosphate residues linked by high energy phospho-anhydride bonds ubiquitously found in all organisms. Despite its structural simplicity, it plays diverse functional roles. polyP is involved in myriad of processes including serving as microbial phosphagens, buffer against alkalis, Ca2+ storage, metal-chelating agents, pathogen virulence, cell viability and proliferation, structural component and chemical chaperones, and in the microbial stress response. In mammalian cells, polyP has been implicated in blood coagulation, inflammation, bone differentiation, cell bioenergetics, signal transduction, Ca2+-signaling, neuronal excitability, as a protein-stabilizing scaffold, and in wound healing, among others. This chapter will discuss (1) polyP metabolism and roles of polyP in prokaryotic and eukaryotic cells, (2) the contribution of polyP to survival, cell proliferation, and motility involved in wound healing in human skin keratinocytes, (3) the use of polyP-containing platelet-rich plasma (PRP) to promote wound healing in acute and chronic wounds, including burns, and (4) the use of polyP-containing PRP in excisional wound models to promote faster healing. While polyP shows promise as a therapeutic agent to accelerate healing for acute and chronic wounds, the molecular mechanisms as a potent modulator of the wound healing process remain to be elucidated
Come to Daddy? Claiming Chris Cunningham for British Art Cinema
Twenty years after he came to prominence via a series of provocative, ground-breaking music videos, Chris Cunningham remains a troubling, elusive figure within British visual culture. His output – which includes short films, advertisements, art gallery commissions, installations, music production and a touring multi-screen live performance – is relatively slim, and his seemingly slow work rate (and tendency to leave projects uncompleted or unreleased) has been a frustration for fans and commentators, particularly those who hoped he would channel his interests and talents into a full-length ‘feature’ film project. There has been a diverse critical response to his musical sensitivity, his associations with UK electronica culture – and the Warp label in particular – his working relationship with Aphex Twin, his importance within the history of the pop video and his deployment of transgressive, suggestive imagery involving mutated, traumatised or robotic bodies. However, this article makes a claim for placing Cunningham within discourses of British art cinema. It proposes that the many contradictions that define and animate Cunningham's work – narrative versus abstraction, political engagement versus surrealism, sincerity versus provocation, commerce versus experimentation, art versus craft, a ‘British’ sensibility versus a transnational one – are also those that typify a particular terrain of British film culture that falls awkwardly between populism and experimentalism
Short-Term Retinoic Acid Treatment Increases In Vivo, but Decreases In Vitro, Epidermal Transglutaminase-K Enzyme Activity and Immunoreactivity
Epidermal transglutaminase-K is believed to catalyze the covalent linking of loricrin and involucrin to form cross-linked (CE) envelopes. In normal skin, transglutaminase-K is expressed as a band immediately below the stratum corneum, whereas in psoriasis and healing skin its expression is considerably expanded throughout the suprabasal layers. We have investigated whether the hyperproliferative state induced by short-term application of topical retinoic acid is similarly characterized by an increase in transglutaminase-K enzyme activity and immunoreactivity.Retinoic acid (0.1% cream) or vehicle were applied to human skin and occluded for 4 d. Skin biopsies were obtained for measurement of transglutaminase-K and transglutaminase-C activity and immunoreactivity. For comparison, cultured normal human keratinocytes were incubated for 4 d in the presence of 1 μM retinoic acid and the subsequent transglutaminase-K activity and immunoreactivity measured. Transglutaminase-K activity was increased 2.8 times in retinoic acid compared to vehicle-treated skin (p < 0.005, n = 12) whereas there was no significant difference in transglutaminase-C activity. However, transglutaminase-K mRNA levels were not significantly different between retinoic acid- and vehicle-treated skin. In vehicle-treated skin, transglutaminase-K immunoreactivity was limited to a narrow, substratum corneal band, but was considerably expanded in a diffuse suprabasal pattern in retinoic acid-treated epidermis. In contrast, transglutaminase-K immunostaining was decreased and its enzymatic activity reduced sixfold in retinoic acid-treated keratinocytes (p < 0.01, n = 4).These results demonstrate that retinoic acid treatment in vivo, in contrast to in vitro, leads to not only increased transglutaminase-K protein expression but also increased enzymatic activity in the absence of detectable increases in mRNA levels.These data, taken with the previously reported lack of in vivo modulation of the differentiation markers keratins 1 and 10 by retinoic acid, indicate that certain aspects of keratinocyte terminal differentiation that are altered in vitro by retinoic acid do not occur in vivo in human skin
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
Proteomic Analysis of Pathways Involved in Estrogen-Induced Growth and Apoptosis of Breast Cancer Cells
Estrogen is a known growth promoter for estrogen receptor (ER)-positive breast cancer cells. Paradoxically, in breast cancer cells that have been chronically deprived of estrogen stimulation, re-introduction of the hormone can induce apoptosis.Here, we sought to identify signaling networks that are triggered by estradiol (E2) in isogenic MCF-7 breast cancer cells that undergo apoptosis (MCF-7:5C) versus cells that proliferate upon exposure to E2 (MCF-7). The nuclear receptor co-activator AIB1 (Amplified in Breast Cancer-1) is known to be rate-limiting for E2-induced cell survival responses in MCF-7 cells and was found here to also be required for the induction of apoptosis by E2 in the MCF-7:5C cells. Proteins that interact with AIB1 as well as complexes that contain tyrosine phosphorylated proteins were isolated by immunoprecipitation and identified by mass spectrometry (MS) at baseline and after a brief exposure to E2 for two hours. Bioinformatic network analyses of the identified protein interactions were then used to analyze E2 signaling pathways that trigger apoptosis versus survival. Comparison of MS data with a computationally-predicted AIB1 interaction network showed that 26 proteins identified in this study are within this network, and are involved in signal transduction, transcription, cell cycle regulation and protein degradation.G-protein-coupled receptors, PI3 kinase, Wnt and Notch signaling pathways were most strongly associated with E2-induced proliferation or apoptosis and are integrated here into a global AIB1 signaling network that controls qualitatively distinct responses to estrogen
Real-time genomic characterization of advanced pancreatic cancer to enable precision medicine
Clinically relevant subtypes exist for pancreatic ductal adenocarcinoma (PDAC), but molecular characterization is not yet standard in clinical care. We implemented a biopsy protocol to perform time-sensitive whole-exome sequencing and RNA sequencing for patients with advanced PDAC. Therapeutically relevant genomic alterations were identified in 48% (34/71) and pathogenic/likely pathogenic germline alterations in 18% (13/71) of patients. Overall, 30% (21/71) of enrolled patients experienced a change in clinical management as a result of genomic data. Twenty-six patients had germline and/or somatic alterations in DNA-damage repair genes, and 5 additional patients had mutational signatures of homologous recombination deficiency but no identified causal genomic alteration. Two patients had oncogenic in-frame BRAF deletions, and we report the first clinical evidence that this alteration confers sensitivity to MAPK pathway inhibition. Moreover, we identified tumor/stroma gene expression signatures with clinical relevance. Collectively, these data demonstrate the feasibility and value of real-time genomic characterization of advanced PDAC.Significance: Molecular analyses of metastatic PDAC tumors are challenging due to the heterogeneous cellular composition of biopsy specimens and rapid progression of the disease. Using an integrated multidisciplinary biopsy program, we demonstrate that real-time genomic characterization of advanced PDAC can identify clinically relevant alterations that inform management of this difficult disease. Cancer Discov; 8(9); 1096-111. ©2018 AACR.See related commentary by Collisson, p. 1062This article is highlighted in the In This Issue feature, p. 1047
Eyes wide open: perceived exploitation and its consequences
Drawing on the array of literature on exploitation from several social science disciplines, we propose a new way of seeing employer-employee relationships by introducing the concept of perceived exploitative employee-organization relationships, distinguish it from related concepts, and conduct five studies to develop a scale and test our theoretical model of the effects of such employee perceptions. Contributing to the Employee-Organization Relationships and workplace emotions literatures, perceived exploitation is defined as employees’ perceptions that they have been purposefully taken advantage of in their relationship with the organization, to the benefit of the organization itself. We propose and find that such perceptions are associated with both outward-focused emotions of anger and hostility toward the organization and inward-focused ones of shame and guilt at remaining in an exploitative job. In two studies including construction workers and a time-lagged study of medical residents, we find that the emotions of anger and hostility partially mediate the effects of perceived exploitation on employee engagement, revenge against the organization, organizational commitment, and turnover intentions, whereas the emotions of shame and guilt partially mediate the effects of perceived exploitation on employee burnout, silence, and psychological withdrawal
- …