3 research outputs found

    Fuzzy Logic Control for Multiresolutive Adaptive PN Acquisition Scheme in Time-Varying Multipath Ionospheric Channel

    Get PDF
    Communication with remote places is a challenge often solved using satellites. However, when trying to reach Antarctic stations, this solution suffers from poor visibility range and high operational costs. In such scenarios, skywave ionospheric communication systems represent a good alternative to satellite communications. The Research Group in Electromagnetism and Communications (GRECO) is designing an HF system for long haul digital communication between the Antarctic Spanish Base in Livingston Island (62.6S, 60.4W) and Observatori de l’Ebre in Spain (40.8N,0.5E) (Vilella et al., 2008). The main interest of Observatori de l’Ebre is the transmission of the data collected from the sensors located at the base, including a geomagnetic sensor, a vertical incidence ionosonde, an oblique incidence ionosonde and a GNSS receiver. The geomagnetic sensor, the vertical incidence ionosonde and the GNSS receiver are commercial solutions from third parties. The oblique incidence ionosonde, used to sound the ionospheric channel between Antarctica and Spain, was developed by the GRECO in the framework of this project. During the last Antarctic campaign, exhaustive measurements of the HF channel characteristics were performed, which allowed us to determine parameters such as availability, SNR, delay and Doppler spread, etc. In addition to the scientific interest of this sounding, a further objective of the project is the establishment of a backup link for data transmission from the remote sensors in the Antarctica. In this scenario, ionospheric communications appear to be an interesting complementary alternative to geostationary satellite communications since the latter are expensive and not always available from high-latitudes. Research work in the field of fuzzy logics applied to the estimation of the above mentioned channel was first applied in (Alsina et al., 2005a) for serial search acquisition systems in AWGN channels, afterwards applied to the same channel but in the multiresolutive structure (Alsina et al., 2009a; Morán et al., 2001) in papers (Alsina et al., 2007b; 2009b) achieving good results. In this chapter the application of fuzzy logic control trained for Rayleigh fading channels (Proakis, 1995) with Direct-Sequence Spread-Spectrum (DS-SS) is presented, specifically suited for the ionospheric channel Antarctica-Spain. Stability and reliability of the reception, which are currently being designed, are key factors for the reception. It is important to note that the fuzzy control design presented in this chapter not only resolves the issue of improving the multiresolutive structure performance presented by (Morán et al., 2001), but also introduces a new option for the control design of many LMS adaptive structures used for PN code acquisition found in the literature. (El-Tarhuni & Sheikh, 1996) presented an LMS-based system to acquire a DS-SS system in Rayleigh channels; years after, (Han et al., 2006) improved the performance of the acquisition system designed by (El-Tarhuni & Sheikh, 1996). And also in other type of channels, LMS filters are used as an acquisition system, even in oceanic transmissions (Stojanovic & Freitag, 2003). Although the fuzzy control system presented in this chapter is compared to the stability control used in (Morán et al., 2001) it also can be used to improve all previous designs performance in terms of stability and robustness. Despite this generalization, the design of every control system should be done according to the requirements of the acquisition system and the specific channel characteristics

    Sons al Balcó, a Citizen Science Approach to Map the Soundscape of Catalonia

    No full text
    Sons al Balcó (Catalan for “Sounds of the balcony”) was a project born to study the effect that the COVID-19 pandemic lockdown caused on the perception of noise in Catalonia. One of the aims of the project was to combine the research activities—acoustic and image processing, urbanistic analysis and health and annoyance evaluation—with the dynamic collaboration with citizens and other stakeholders to create social and environmental impact, to raise awareness and design tools to improve citizenship development and empowerment. This first year of Sons al Balcó has shown that citizens are willing to participate in initiatives that work with their everyday life, because one year after the lockdown, a new soundscape map of Catalonia has been built with their collaboration and their perceptual impact from their balconies or windows. This has allowed the inclusion of other issues that enhance the final goal of describing and finding relationships between the annoyance caused by noise, and other factors as the environment (urban, suburban, rural) and the landscape, including the soundscape and noise levels in this evaluation. Objective measurements of LAeq have been conducted during the lockdown and in the months afterwards to describe the average noise and its possible link with outdoor activities. During this second collecting campaign, Sons al Balcó managed to gather more than 220 contributions. In this work, we detail the definitions of the metrics that include urbanistic and health-related environmental elements (water, trees, etc.), together with the socio-economic and demographic data that correspond to the answers of the questionnaires, and finally, the information extracted from the audios and the videos sent by the citizens. Preliminary results show encouraging dependencies between perception gathered with the questionnaires and the objective data collected, still in process of analysis, and a clear bias to a worse soundscape in 2021 in comparison to the 2020 campaign

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    International audienceInterindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-ω (IFN-ω) (13 patients), against the 13 types of IFN-α (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men
    corecore