2,705 research outputs found

    A Family of GFP-like Proteins with Different Spectral Properties in Lancelet Branchiostoma Floridae

    Get PDF
    Background: Members of the green fluorescent protein (GFP) family share sequence similarity and the 11-stranded β-barrel fold. Fluorescence or bright coloration, observed in many members of this family, is enabled by the intrinsic properties of the polypeptide chain itself, without the requirement for cofactors. Amino acid sequence of fluorescent proteins can be altered by genetic engineering to produce variants with different spectral properties, suitable for direct visualization of molecular and cellular processes. Naturally occurring GFP-like proteins include fluorescent proteins from cnidarians of the Hydrozoa and Anthozoa classes, and from copepods of the Pontellidae family, as well as non-fluorescent proteins from Anthozoa. Recently, an mRNA encoding a fluorescent GFP-like protein AmphiGFP, related to GFP from Pontellidae, has been isolated from the lancelet Branchiostoma floridae, a cephalochordate (Deheyn et al., Biol Bull, 2007 213:95). Results: We report that the nearly-completely sequenced genome of Branchiostoma floridae encodes at least 12 GFP-like proteins. The evidence for expression of six of these genes can be found in the EST databases. Phylogenetic analysis suggests that a gene encoding a GFP-like protein was present in the common ancestor of Cnidaria and Bilateria. We synthesized and expressed two of the lancelet GFP-like proteins in mammalian cells and in bacteria. One protein, which we called LanFP1, exhibits bright green fluorescence in both systems. The other protein, LanFP2, is identical to AmphiGFP in amino acid sequence and is moderately fluorescent. Live imaging of the adult animals revealed bright green fluorescence at the anterior end and in the basal region of the oral cirri, as well as weaker green signals throughout the body of the animal. In addition, red fluorescence was observed in oral cirri, extending to the tips. Conclusion GFP-like proteins may have been present in the primitive Metazoa. Their evolutionary history includes losses in several metazoan lineages and expansion in cephalochordates that resulted in the largest repertoire of GFP-like proteins known thus far in a single organism. Lancelet expresses several of its GFP-like proteins, which appear to have distinct spectral properties and perhaps diverse functions. Reviewers: This article was reviewed by Shamil Sunyaev, Mikhail Matz (nominated by I. King Jordan) and L. Aravind

    A family of GFP-like proteins with different spectral properties in lancelet Branchiostoma floridae

    Get PDF
    BACKGROUND:Members of the green fluorescent protein (GFP) family share sequence similarity and the 11-stranded ß-barrel fold. Fluorescence or bright coloration, observed in many members of this family, is enabled by the intrinsic properties of the polypeptide chain itself, without the requirement for cofactors. Amino acid sequence of fluorescent proteins can be altered by genetic engineering to produce variants with different spectral properties, suitable for direct visualization of molecular and cellular processes. Naturally occurring GFP-like proteins include fluorescent proteins from cnidarians of the Hydrozoa and Anthozoa classes, and from copepods of the Pontellidae family, as well as non-fluorescent proteins from Anthozoa. Recently, an mRNA encoding a fluorescent GFP-like protein AmphiGFP, related to GFP from Pontellidae, has been isolated from the lancelet Branchiostoma floridae, a cephalochordate (Deheyn et al., Biol Bull, 2007 213:95).RESULTS:We report that the nearly-completely sequenced genome of Branchiostoma floridae encodes at least 12 GFP-like proteins. The evidence for expression of six of these genes can be found in the EST databases. Phylogenetic analysis suggests that a gene encoding a GFP-like protein was present in the common ancestor of Cnidaria and Bilateria. We synthesized and expressed two of the lancelet GFP-like proteins in mammalian cells and in bacteria. One protein, which we called LanFP1, exhibits bright green fluorescence in both systems. The other protein, LanFP2, is identical to AmphiGFP in amino acid sequence and is moderately fluorescent. Live imaging of the adult animals revealed bright green fluorescence at the anterior end and in the basal region of the oral cirri, as well as weaker green signals throughout the body of the animal. In addition, red fluorescence was observed in oral cirri, extending to the tips.CONCLUSION:GFP-like proteins may have been present in the primitive Metazoa. Their evolutionary history includes losses in several metazoan lineages and expansion in cephalochordates that resulted in the largest repertoire of GFP-like proteins known thus far in a single organism. Lancelet expresses several of its GFP-like proteins, which appear to have distinct spectral properties and perhaps diverse functions.REVIEWERS:This article was reviewed by Shamil Sunyaev, Mikhail Matz (nominated by I. King Jordan) and L. Aravind

    Predictors of Nonseroconversion to SARS-CoV-2 Vaccination in Kidney Transplant Recipients

    Get PDF
    Kidney transplant recipients (KTRs) are still at risk of severe COVID-19 disease after SARS‑CoV‑2 vaccination, especially when they have limited antibody formation. Our aim was to understand the factors that may limit their humoral response. METHODS. Our data are derived from KTRs who were enrolled in the Dutch Renal Patients COVID-19 Vaccination consortium, using a discovery cohort and 2 external validation cohorts. Included in the discovery (N = 1804) and first validation (N = 288) cohorts were participants who received 2 doses of the mRNA-1273 vaccine. The second validation cohort consisted of KTRs who subsequently received a third dose of any SARS-CoV-2 vaccine (N = 1401). All participants had no history of SARS-CoV-2 infection. A multivariable logistic prediction model was built using stepwise backward regression analysis with nonseroconversion as the outcome. RESULTS. The discovery cohort comprised 836 (46.3%) KTRs, the first validation cohort 124 (43.1%) KTRs, and the second validation cohort 358 (25.6%) KTRs who did not seroconvert. In the final multivariable model‚ 12 factors remained predictive for nonseroconversion: use of mycophenolate mofetil/mycophenolic acid (MMF/MPA); chronic lung disease, heart failure, and diabetes; increased age; shorter time after transplantation; lower body mass index; lower kidney function; no alcohol consumption; ≥2 transplantations; and no use of mammalian target of rapamycin inhibitors or calcineurin inhibitors. The area under the curve was 0.77 (95% confidence interval [CI], 0.74-0.79) in the discovery cohort after adjustment for optimism, 0.81 (95% CI, 0.76-0.86) in the first validation cohort, and 0.67 (95% CI, 0.64-0.71) in the second validation cohort. The strongest predictor was the use of MMF/MPA, with a dose-dependent unfavorable effect, which remained after 3 vaccinations. CONCLUSIONS. In a large sample of KTRs, we identify a selection of KTRs at high risk of nonseroconversion after SARS-CoV-2 vaccination. Modulation of MMF/MPA treatment before vaccination may help to optimize vaccine response in these KTRs. This model contributes to future considerations on alternative vaccination strategies

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    Full Genome Characterisation of Bluetongue Virus Serotype 6 from the Netherlands 2008 and Comparison to Other Field and Vaccine Strains

    Get PDF
    In mid September 2008, clinical signs of bluetongue (particularly coronitis) were observed in cows on three different farms in eastern Netherlands (Luttenberg, Heeten, and Barchem), two of which had been vaccinated with an inactivated BTV-8 vaccine (during May-June 2008). Bluetongue virus (BTV) infection was also detected on a fourth farm (Oldenzaal) in the same area while testing for export. BTV RNA was subsequently identified by real time RT-PCR targeting genome-segment (Seg-) 10, in blood samples from each farm. The virus was isolated from the Heeten sample (IAH “dsRNA virus reference collection” [dsRNA-VRC] isolate number NET2008/05) and typed as BTV-6 by RT-PCR targeting Seg-2. Sequencing confirmed the virus type, showing an identical Seg-2 sequence to that of the South African BTV-6 live-vaccine-strain. Although most of the other genome segments also showed very high levels of identity to the BTV-6 vaccine (99.7 to 100%), Seg-10 showed greatest identity (98.4%) to the BTV-2 vaccine (RSAvvv2/02), indicating that NET2008/05 had acquired a different Seg-10 by reassortment. Although Seg-7 from NET2008/05 was also most closely related to the BTV-6 vaccine (99.7/100% nt/aa identity), the Seg-7 sequence derived from the blood sample of the same animal (NET2008/06) was identical to that of the Netherlands BTV-8 (NET2006/04 and NET2007/01). This indicates that the blood contained two different Seg-7 sequences, one of which (from the BTV-6 vaccine) was selected during virus isolation in cell-culture. The predominance of the BTV-8 Seg-7 in the blood sample suggests that the virus was in the process of reassorting with the northern field strain of BTV-8. Two genome segments of the virus showed significant differences from the BTV-6 vaccine, indicating that they had been acquired by reassortment event with BTV-8, and another unknown parental-strain. However, the route by which BTV-6 and BTV-8 entered northern Europe was not established

    Adherence to preventive measures after SARS-CoV-2 vaccination and after awareness of antibody response in kidney transplant recipients in the Netherlands:a nationwide questionnaire study

    Get PDF
    BACKGROUND: Kidney transplant recipients (KTRs) were advised to tightly adhere to government recommendations to curb the spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) because of a high risk of morbidity and mortality and decreased immunogenicity after vaccination. The aim of this study was to analyse the change in adherence to preventive measures after vaccination and awareness of antibody response, and to evaluate its effectiveness.METHODS: In this large-scale, national questionnaire study, questionnaires were sent to 3531 KTRs enrolled in the Dutch RECOVAC studies, retrospectively asking for adherence to nine preventive measures on a 5-point Likert scale before and after SARS-CoV-2 vaccination and after awareness of antibody response. Blood samples were collected 28 days after the second vaccination. Antibody response was categorised as non-responder (≤50 BAU/mL), low-responder (&gt;50 ≤ 300 BAU/mL) or high-responder (&gt;300 BAU/mL), and shared with participants as a correlate of protection. Participants of whom demographics on sex and age, blood samples and completed questionnaires were available, were included. Our study took place between February 2021 and January 2022. The primary outcome of adherence before and after vaccination was assessed between August and October 2021 and compared via the Wilcoxon signed rank sum test. Logistic regression analysis was performed to estimate the association between antibody response and non-adherence, and adherence on acquiring SARS-CoV-2 infection. This study is registered at ClinicalTrials.gov (NCT04841785).FINDINGS: In 2939 KTRs (83%) who completed the first questionnaire on adherence to preventive measures, adherence was higher before than after vaccination (4.56, IQR 4.11-4.78 and 4.22, IQR 3.67-4.67, p &lt; 0.001). Adherence after awareness of antibody response was analysed in 2399 KTRs (82%) of whom also blood samples were available, containing 949 non-responders, 500 low-responders and 950 high-responders. Compared to non-responders, low- and high-responders reported higher non-adherence. Higher adherence was associated with lower infection rates before and after vaccination (OR 0.67 [0.51-0.91], p = 0.008 and OR 0.48 [0.28-0.86], p = 0.010).INTERPRETATION: Adherence decreased after SARS-CoV-2 vaccination and in KTRs who were aware of a subsequent antibody response compared with those without. Preventive measures in this vulnerable group seem to be effective, regardless of vaccination status. This study starts a debate on sharing antibody results with the patient and future studies should elucidate whether decreased adherence in antibody responders is justified, also in view of future pandemics.FUNDING: The Netherlands Organization for Health Research and Development and the Dutch Kidney Foundation.</p

    Impact of immunosuppressive treatment and type of SARS-CoV-2 vaccine on antibody levels after three vaccinations in patients with chronic kidney disease or kidney replacement therapy

    Get PDF
    Background. Patients with chronic kidney disease (CKD) or kidney replacement therapy demonstrate lower antibody levels after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination compared with healthy controls. In a prospective cohort, we analysed the impact of immunosuppressive treatment and type of vaccine on antibody levels after three SARS-CoV-2 vaccinations. Methods. Control subjects (n = 186), patients with CKD G4/5 (n = 400), dialysis patients (n = 480) and kidney transplant recipients (KTR) (n = 2468) were vaccinated with either mRNA-1273 (Moderna), BNT162b2 (Pfizer-BioNTech) or AZD1222 (Oxford/AstraZeneca) in the Dutch SARS-CoV-2 vaccination programme. Third vaccination data were available in a subgroup of patients (n = 1829). Blood samples and questionnaires were obtained 1 month after the second and third vaccination. Primary endpoint was the antibody level in relation to immunosuppressive treatment and type of vaccine. Secondary endpoint was occurrence of adverse events after vaccination. Results. Antibody levels after two and three vaccinations were lower in patients with CKD G4/5 and dialysis patients with immunosuppressive treatment compared with patients without immunosuppressive treatment. After two vaccinations, we observed lower antibody levels in KTR using mycophenolate mofetil (MMF) compared with KTR not using MMF [20 binding antibody unit (BAU)/mL (3-113) vs 340 BAU/mL (50-1492), P &lt; .001]. Seroconversion was observed in 35% of KTR using MMF, compared with 75% of KTR not using MMF. Of the KTR who used MMF and did not seroconvert, eventually 46% seroconverted after a third vaccination. mRNA-1273 induces higher antibody levels as well as a higher frequency of adverse events compared with BNT162b2 in all patient groups. Conclusions. Immunosuppressive treatment adversely affects the antibody levels after SARS-CoV-2 vaccination in patients with CKD G4/5, dialysis patients and KTR. mRNA-1273 vaccine induces a higher antibody level and higher frequency of adverse events.</p

    Post COVID-19 condition imposes significant burden in patients with advanced chronic kidney disease:A nested case-control study

    Get PDF
    Background: The burden of post COVID-19 condition (PCC) is not well studied in patients with advanced kidney disease. Methods: A large prospective cohort of SARS-CoV-2 vaccinated patients with chronic kidney disease stages G4–G5 (CKD G4/5), on dialysis, and kidney transplant recipients (KTR) were included. Antibody levels were determined after vaccination. Presence of long-lasting symptoms was assessed in patients with and without prior COVID-19 and compared using logistic regression. In patients with prior COVID-19, PCC was defined according to the WHO definition. Results: Two hundred sixteen CKD G4/5 patients, 375 dialysis patients, and 2005 KTR were included. Long-lasting symptoms were reported in 204/853 (24%) patients with prior COVID-19 and in 297/1743 (17%) patients without prior COVID-19 (aOR: 1.45 (1.17–1.78)], P &lt; 0.001). PCC was prevalent in 29% of CKD G4/5 patients, 21% of dialysis patients, and 24% of KTR. In addition, 69% of patients with PCC reported (very) high symptom burden. Odds of PCC was lower per 10-fold increase in antibody level after vaccination (aOR 0.82 [0.70–0.96], P = 0.01) and higher in case of COVID-19 related hospital admission (aOR 4.64 [2.61–8.25], P = 0.003). Conclusions: CKD G4/5 patients, dialysis patients, and KTR are at risk for PCC with high symptom burden after SARS-CoV-2 vaccination, especially if antibody levels are low and in case of hospitalization due to COVID-19.</p

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore