27,729 research outputs found

    FOLDER3D: A graphical file management system supporting visualisation of file relationships

    Get PDF
    The desktop metaphor with its hierarchical structure of folders is the basis of almost all graphical file management systems. Despite this popularity, these systems suffer from several problems, including the restrictiveness of the single inheritance structure of hierarchical file management. Although various alternative systems have been proposed, none of these have gained popularity. We argue that the reason for this failure is that these systems have generally proposed complete alternatives to the hierarchical system, thus ignoring many of its positive aspects. In this paper we describe a 3D graphical file management which complements conventional 2D hierarchical folder structures by allowing visualisation of alternative file relationships

    Entanglement control in hybrid optomechanical systems

    Get PDF
    We demonstrate the control of entanglement in a hybrid optomechanical system comprising an optical cavity with a mechanical end-mirror and an intracavity Bose-Einstein condensate (BEC). Pulsed laser light (tuned within realistic experimental conditions) is shown to induce an almost sixfold increase of the atom-mirror entanglement and to be responsible for interesting dynamics between such mesoscopic systems. In order to assess the advantages offered by the proposed control technique, we compare the time-dependent dynamics of the system under constant pumping with the evolution due to the modulated laser light.Comment: Published versio

    Characterization of Bose-Hubbard Models with Quantum Non-demolition Measurements

    Get PDF
    We propose a scheme for the detection of quantum phase transitions in the 1D Bose-Hubbard (BH) and 1D Extended Bose-Hubbard (EBH) models, using the non-demolition measurement technique of quantum polarization spectroscopy. We use collective measurements of the effective total angular momentum of a particular spatial mode to characterise the Mott insulator to superfluid phase transition in the BH model, and the transition to a density wave state in the EBH model. We extend the application of collective measurements to the ground states at various deformations of a super-lattice potential.Comment: 8 pages, 9 figures; published version in PRA, Editors' Suggestio

    Paper folding, Riemann surfaces, and convergence of pseudo-Anosov sequences

    Full text link
    A method is presented for constructing closed surfaces out of Euclidean polygons with infinitely many segment identifications along the boundary. The metric on the quotient is identified. A sufficient condition is presented which guarantees that the Euclidean structure on the polygons induces a unique conformal structure on the quotient surface, making it into a closed Riemann surface. In this case, a modulus of continuity for uniformizing coordinates is found which depends only on the geometry of the polygons and on the identifications. An application is presented in which a uniform modulus of continuity is obtained for a family of pseudo-Anosov homeomorphisms, making it possible to prove that they converge to a Teichm\"uller mapping on the Riemann sphere.Comment: 75 pages, 18 figure

    Long-range multipartite entanglement close to a first order quantum phase transition

    Get PDF
    We provide insight in the quantum correlations structure present in strongly correlated systems beyond the standard framework of bipartite entanglement. To this aim we first exploit rotationally invariant states as a test bed to detect genuine tripartite entanglement beyond the nearest-neighbor in spin-1/2 models. Then we construct in a closed analytical form a family of entanglement witnesses which provides a sufficient condition to determine if a state of a many-body system formed by an arbitrary number of spin-1/2 particles possesses genuine tripartite entanglement, independently of the details of the model. We illustrate our method by analyzing in detail the anisotropic XXZ spin chain close to its phase transitions, where we demonstrate the presence of long range multipartite entanglement near the critical point and the breaking of the symmetries associated to the quantum phase transition.Comment: 6 pages, 3 figures, RevTeX 4, the abstract was changed and the manuscript was extended including the contents of the previous appendix

    The Lifecycles of Apps in a Social Ecosystem

    Full text link
    Apps are emerging as an important form of on-line content, and they combine aspects of Web usage in interesting ways --- they exhibit a rich temporal structure of user adoption and long-term engagement, and they exist in a broader social ecosystem that helps drive these patterns of adoption and engagement. It has been difficult, however, to study apps in their natural setting since this requires a simultaneous analysis of a large set of popular apps and the underlying social network they inhabit. In this work we address this challenge through an analysis of the collection of apps on Facebook Login, developing a novel framework for analyzing both temporal and social properties. At the temporal level, we develop a retention model that represents a user's tendency to return to an app using a very small parameter set. At the social level, we organize the space of apps along two fundamental axes --- popularity and sociality --- and we show how a user's probability of adopting an app depends both on properties of the local network structure and on the match between the user's attributes, his or her friends' attributes, and the dominant attributes within the app's user population. We also develop models that show the importance of different feature sets with strong performance in predicting app success.Comment: 11 pages, 10 figures, 3 tables, International World Wide Web Conferenc

    Interplay between structure and density anomaly for an isotropic core-softened ramp-like potential

    Get PDF
    Using molecular dynamics simulations and integral equations we investigate the structure, the thermodynamics and the dynamics of a system of particles interacting through a continuous core- softened ramp-like interparticle potential. We found density, dynamic and structural anomalies similar to that found in water. Analysis of the radial distribution function for several temperatures at fixed densities show a pattern that may be related to the origin of density anomaly.Comment: 7 pages, 3 figure

    A Clifford analysis approach to superspace

    Full text link
    A new framework for studying superspace is given, based on methods from Clifford analysis. This leads to the introduction of both orthogonal and symplectic Clifford algebra generators, allowing for an easy and canonical introduction of a super-Dirac operator, a super-Laplace operator and the like. This framework is then used to define a super-Hodge coderivative, which, together with the exterior derivative, factorizes the Laplace operator. Finally both the cohomology of the exterior derivative and the homology of the Hodge operator on the level of polynomial-valued super-differential forms are studied. This leads to some interesting graphical representations and provides a better insight in the definition of the Berezin-integral.Comment: 15 pages, accepted for publication in Annals of Physic
    corecore