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We provide insight into the quantum correlations structure present in strongly correlated systems beyond the
standard framework of bipartite entanglement. To this aim we first exploit rotationally invariant states as a test
bed to detect genuine tripartite entanglement beyond the nearest neighbor in spin-1/2 models. Then we construct
in a closed analytical form a family of entanglement witnesses which provides a sufficient condition to determine
if a state of a many-body system formed by an arbitrary number of spin-1/2 particles possesses genuine tripartite
entanglement, independently of the details of the model. We illustrate our method by analyzing in detail the
anisotropic XXZ spin chain close to its phase transitions, where we demonstrate the presence of long-range
multipartite entanglement near the critical point and the breaking of the symmetries associated with the quantum
phase transition.
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I. INTRODUCTION

The characterization of entanglement in many-body
strongly correlated systems has been a very active research
area in the last decade (see, e.g., Ref. [1] for a review).
Entanglement is expected to be particularly relevant in
quantum phase transitions (QPTs), and, in order to gather
valuable insights, ground states of paradigmatic spin chain
models have been exhaustively analyzed. First, it was shown
in Refs. [2,3] that for the Ising chain in a transverse field,
pairwise entanglement measured by the concurrence between
nearest (and next-to-nearest) neighbors signals the position of
the critical point (but does not display critical behavior) while
it is strictly zero otherwise. The conjecture that, near criticality,
entanglement should be present at all length scales led to the
concept of localizable entanglement, which was introduced in
Ref. [4]. For a given N -partite state ρ1 2... N , the localizable
entanglement is the maximum average entanglement that can
be made available to two predetermined parties (say, spins 1
and 2) by performing general local measurements on the rest
of the system. If the correlation length diverges at criticality,
so does the length of localizable entanglement. However, the
converse is not necessarily true [4].

A quite different approach was considered in Ref. [5], where
the scaling of the entanglement between a given block of spins
and the rest of a chain was analyzed against the size of the block
itself. In such cases, the entanglement between two blocks can
be fully determined simply by considering the von Neumann
entropy of a block (also termed entanglement entropy). In this
approach, contrary to the pairwise case, entanglement is clearly
related to critical behavior. Away from criticality, the entangle-
ment entropy reaches a constant value and shows logarithmic
divergence with the size of the block when approaching the
critical point. Conformal field theory was used to relate such
divergence to the central charge of the corresponding effective
theory, thus linking entanglement and the universality class of
the corresponding QPT. Remarkably, both the entanglement
entropy as well as the Renyi entropies are functions of the
eigenvalues of the reduced density matrix of the block.

While all previous studies concern exclusively bipartite
entanglement (either pairwise or block-block), a full descrip-
tion of many-body strongly correlated systems should include
multipartite entanglement. Indeed, multipartite entanglement
has been demonstrated in certain spin models [6–10], and its
role in QPTs has been long discussed (see, e.g., Ref. [11]
and references therein). However, the study of multipartite
entanglement is presently much less developed in light of its
daunting nature and the lack of appropriate tools. In fact, we
even lack general measures of entanglement for mixed states
of three spins, and it is not possible to extend the concept of
entanglement entropy to more than two blocks.

In this paper we analyze long-range multipartite entangle-
ment in the vicinity of quantum phase transitions providing
a general method that relies only on three-point correlators.
The paper is organized as follows: In Sec. II we briefly
review rotationally invariant states, which will be used as the
starting point for the construction of a family of entanglement
witnesses (i.e., observables) in Sec. III. We provide a sufficient
condition to assess genuine tripartite entanglement in the
ground state of a many-body system. By relying on the
availability of three-point correlation functions only, our
approach does not depend on the Hamiltonian properties (type
and range of the interactions, symmetries of the model, lattice
geometry), its dimensionality, or the actual choice of the subset
of three spins picked from the lattice. With such tools at
hand, we demonstrate that genuine multipartite entanglement
(GME) is highly sensitive to quantum phase transitions. In
order to provide a significant context where our formalism
can be applied, we focus on the spin-1/2 XXZ chain. In
Sec. IV we first quickly review the properties of the model.
Then we consider the transition from the XY critical phase
to the ferromagnetic one. It is known that as the critical
point is approached pairwise bipartite entanglement becomes
independent of the distance between the spins [12]. Here we
show that also long-range multipartite entanglement emerges
in the vicinity of the the critical point. In this sense we
provide a finer-grained entanglement structure than previous
analysis based on collective operators [8,9] by proving that
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entanglement extends far beyond the nearest-neighbor scale.
We summarize our results in Sec. V.

II. ROTATIONALLY INVARIANT STATES

Our analysis stems from rotationally invariant states of three
qubits, whose entanglement properties have been unambigu-
ously characterized in Ref. [13] through a set of scalar inequali-
ties. By projecting a generic state onto its rotationally invariant
subspace, we can also address GME in nonrotationally invari-
ant states. Equivalently, one can detect GME by constructing
suitable rotationally invariant entanglement witnesses.

Before proceeding further we review, for completeness,
the characterization of rotationally invariant states. We then
provide a geometrical description of such space and construct
a family of entanglement witnesses.

The class of SO(3) invariant tripartite states ρ is defined as{
ρ : ∀̂

n,θ

[
Dj1

n̂,θ ⊗ Dj2

n̂,θ ⊗ Dj3

n̂,θ ,ρ
] = 0

}
, (1)

where Dji

n̂,θ denotes the unitary irreducible representation of
the rotations R(n̂,θ ) from the SO(3) group.

For three qubits, ρ acts trivially in the two subspaces of total
angular momentum 1/2 and the one of 3/2. However, since in
general [ρ,J12] �= 0 (with J12 = j1 + j2) the two subspaces
with J = 1/2 can be mixed. Denoting by P1/2,a(b)(θ,φ) the
two orthogonal projectors onto the mixed J = 1/2 subspaces,
parametrized by the angles θ and φ, and by P3/2 the projector
onto the subspace J = 3/2, the density operator can be
decomposed as

ρ = p

2
P1/2,a(θ,φ) + q

2
P1/2,b(θ,φ) + 1 − p − q

4
P3/2, (2)

where 0 � p,q � 1. Hence four real parameters p,q,θ,φ

describe the set of three-qubit SO(3)-invariant states. The con-
struction can be extended to higher spins, although the number
of parameters grows dramatically. For instance, for spin-1 par-
ticles 13 variables are required. As the SO(3) and SU(2) groups
are isomorphic, the above representation can be straightfor-
wardly mapped onto the one for SU(2) invariant states [13]

ρ = 1

4

∑
k=+,0,1,2,3

rk Rk, (3)

where rk = tr(ρRk) and the factor 1/4 ensures normalization.
The Hermitian operators Rk read

R+ = (1 + V12 + V23 + V13 + V123 + V321)/6, (4a)

R0 = (21 − V123 − V321)/3, (4b)

R1 = (2V23 − V13 − V12)/3, (4c)

R2 = (V12 − V13)/
√

3, (4d)

R3 = i(V123 − V321)/
√

3, (4e)

where Vij is the permutation (or swap) operator acting on
qubits i and j ; V123 = V12V23 and V321 = V23V12 are the two
operators which cyclically permute all three particles, and 1
denotes the identity. The operator R+ (R0) is proportional to the
projector P3/2 (P1/2 = P1/2,a + P1/2,b). The three remaining
matrices Ri (i = 1,2,3) act on the four-dimensional subspace
of total spin-1/2, follow the angular momentum commutation

rules, and are thus traceless. In order to ensure that Eq. (3)
represents a legitimate state, the coefficients rk must satisfy
the conditions

r+,r0 � 0, r+ + r0 = 1, r2
1 + r2

2 + r2
3 � r2

0 . (5)

III. MULTIPARTITE ENTANGLEMENT
CHARACTERIZATION AND DETECTION

The entanglement characterization of three-qubit states
distinguishes four classes [14–16]: (1) separable states S of
the form ρ = ∑

i λi ρ
(1)
i ⊗ ρ

(2)
i ⊗ ρ

(3)
i , (2) biseparable states

B belonging to the convex hull of states separable with
respect to one of the partitions 1|23, 2|13, or 3|12 denoted
by B1, B2, and B3, respectively, and two GME classes,
(3) W -type states, and (4) GHZ-type states. Each class
embraces those that are lower in the hierarchy, i.e., S ⊂ B ⊂
W ⊂ GHZ. The distinction between the W -type states and
the GHZ-type ones arises from the fact that for, three qubits,
there are two nonequivalent classes of genuinely entangled
states with representative elements being precisely the W

state |W 〉 = 1/
√

3(|100〉 + |010〉 + |001〉) and the GHZ state
|GHZ〉 = 1

√
2(|000〉 + |111〉). Elements of one class cannot

be interconverted into elements of the second one using
stochastic local operations and classical communications.
Therefore, the W and GHZ classes are formed by convex
combinations of states equivalent to |W 〉 and of combinations
of states equivalent to |GHZ〉, respectively.

In Ref. [13], the subsetsS andB of the SU(2) invariant states
are fully described in terms of inequalities for the coefficients
rk . In particular, the set S is constrained by the conditions

1/4 � r+ � 1,

3r2
3 + (1 − 3r+)2 � (r1 + r+)

[
(r1 − 2r+)2 − 3r2

2

]
. (6)

Analogously, the states belonging to the set B1, can be shown
to fulfill the condition

|m| < 1,
(7)

3
(
r2

2 + r2
3

)
� (1 − |m|)2 − [(r1 − r+) − |m|]2,

where m = 1 + r1 − 2r+. The corresponding sets B2 and B3

are found by rotating B1 by ±2π/3 around the axis r0. Finally,
the set T of genuine tripartite entangled states is found as the
complement of B in the set of all states.

For real Hamiltonians, the above description is further
simplified as their ground states and their reductions are
represented by real density operators. This is equivalent to
setting φ = 0 in (2) or r3 = 0 in (3) and allows us to visualize
the set of rotationally invariant states in the space r1,r2,r0

(Fig. 1). The complete set is a cone with symmetry axis parallel
to the axis r0. In Fig. 1(a)–(b) we depict the set of separable
S and biseparable B states, respectively; the complementary
volume contains genuine tripartite entangled states. Figure 1(c)
show a horizontal section of the cone for a fixed r0 and Fig. 1(d)
a vertical section. We notice that a necessary condition for a
state to be tripartite entangled is r0 > 2/3. Below this value,
biseparable states fill the cone completely.

The above criteria can be extended to all states using
the twirling map that projects each state onto its rotational
invariant subspace: �ρ = ∫

G
dU Uρ U† where G consists of
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FIG. 1. (Color online) Graphical representation of the set of real
rotationally invariant states and its subsets with various types of
entanglement in the space of dimensionless parameters r0,r1,r2.
(a) Separable and (b) biseparable states. (c) A horizontal cut showing
the three sets of biseparable states, their convex hull, and the tangent
in the point P to the set representing the witness. (d) Same as in (c)
but a vertical is shown.

local unitaries U = U ⊗ U ⊗ U . The following statements
now hold: (1) �ρ is SU(2) invariant, (2) if ρ is separable
then �ρ is separable [17], (3) if �ρ is biseparable but not
separable then ρ is not separable, and (4) if �ρ is genuine
tripartite entangled so is ρ.

The geometrical description of the Hilbert space depicted
in Fig. 1 facilitates the construction of a multipartite entan-
glement witness, i.e., an observable W such that tr(Wρ) � 0
∀ρ ∈ B, and there exists at least one state ρ ∈ T such
that tr(Wρ) < 0. It is sufficient to choose a witness of the
form W = ∑

i ciRi , where i ∈ {+,0,1,2}, so its expectation
value with a rotationally invariant state simplifies to a scalar
product tr(Wρ) = ∑

i ciri ≡ c · r . We determine c using the
geometric description of the witness as a plane intersecting
the cone of rotationally invariant states and tangent to the
set B at the point P with normal vector û [see Fig. 1(d)].
We find tr(Wρ) = û · (r − P) and, from the definition of c,
we obtain W = u0R0 + u1R1 + u2R2 − û · P . The witness
plane is calculated with P at the midpoint of the line between
the biseparable subsets B2 and B3. It also clearly depends on
the choice of r0. In fact,

W (r0) =
⎛
⎝1 +

√
3

2

2 − 3r0√
−1 + 4r0 − 3r2

0

⎞
⎠ R0

−R1 −
⎛
⎝ √

3(1 − 2r0)

2
√

−1 + 4r0 − 3r2
0

+ 1

2

⎞
⎠ 1. (8)

The witness can then be rotated about the r0 axis by ±2π/3
to obtain witness planes tangential to B on the lines between
B1 and B2, or B1 and B3, respectively. The explicit derivation
of Eq. (8) and the demonstration that W is a witness can be
found in the Appendix.

IV. ENTANGLEMENT IN THE SPIN-1/2 XXZ MODEL

Let us now focus on the study of GME in an open chain of
size N described by the XXZ Hamiltonian

HXXZ =
N−1∑
i=1

[
J
(
σx

i σ x
i+1 + σ

y

i σ
y

i+1

) + λσ z
i σ z

i+1

]
, (9)

where λ is the anisotropic parameter. For lattices with even N

(and also in the thermodynamic limit) the sign of J is irrelevant
since it is possible to change σx

i → −σx
i and σ

y

i → −σ
y

i for
all even (odd) sites, thus the Hamiltonian is SU(2) invariant
for λ/J = ±1. For any value of λ, HXXZ is U(1) invariant. For
nonbipartite lattices (or odd N ) geometrical frustration can
appear. In what follows, we assume without loss of generality
that J = 1.

The complete phase diagram of the model is well known:
the ground state is ferromagnetic for λ � −1, XY critical for
−1 < λ < 1, and Ising-antiferromagnetic (Néel) otherwise.
At λ = −1 a first order transition separates the ferromagnetic
and critical phases. This point is not conformal and has
recently attracted some attention [12,18]. Here we focus on
the multipartite entanglement content in the vicinity of this
phase transition. Before proceeding further, notice that at
λ = −1 the highly degenerate ground state is in the SU(2)
isotropic ferromagnetic multiplet spanned by any state with
maximum total angular momentum J : |J = N/2,Jz〉 for all
possible values of Jz. Neither of these states exhibit finite size
corrections to the energy per site, nor are they rotationally
invariant. However, each of them corresponds to a symmetric
Dicke state, i.e.,∣∣∣∣J = N

2
,Jz = 2k − N

2

〉
= 1√

CN
k

∑
P

∣∣P(1(k),0(N−k))
〉
, (10)

with k subsytems in the state |1〉 and the remaining in the
state |0〉; P are the elements of the permutation group, CN

k

is the binomial coefficient, and {|1〉,|0〉} is the computational
basis (spin up, spin down). Thus, the interchange between any
two spins leaves the corresponding Dicke state unchanged and
by construction any linear combination as well. In the region
−1 < λ < 1, the total spin, J , is not well defined but Jz = 0. In
the limit λ → −1+ the ground state was found numerically to
be an equally weighted superposition of all the elements of the
standard basis within the sector Jz = 0 [12]. Finally, notice
that for λ = +1, the ground state is a rotationally invariant
singlet with J = 0.

We now analyze the entanglement content of the model
by computing both the bipartite concurrence CN (ρi i+r ) of
two qubits at distance r as well as the mean value of the
entanglement witness (8), tr(Wρi j k), for three qubits (i,j,k).
Concurrences can be analytically obtained in the SU(2)
multiplet after realizing that any reduction of a multipartite
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symmetric Dicke state |N/2,k〉 is also symmetric, i.e., inde-
pendent of r and i, and read [19]:

CN (ρi i+r ) = 2max(0,ρ01,01 − √
ρ00,00ρ11,11)

=
(
N2 − 4J 2

z

) −
√(

N2− 4J 2
z

)[
(N−2)2 − 4J 2

z

]
2N (N − 1)

(11)

since the only nonzero matrix elements ρi i+r are
the symmetric ones given by ρ00,00(ρ11,11) = (N ±
2k)(N − 2 ± 2k)/[4N (N − 1)], ρ01,01(01,10)(10,01)(10,10) =
(N2 − 4k2)/[4N (N − 1)]. As previously noted, the value of
the concurrence for large N is very small and close to the exact
value CN = 1/(N − 1) achieved for Jz = 0 (k = N/2). Thus,
for large N , all members of the SU (2) multiplet (except the
trivially separable |N/2, ± N/2〉) have equal concurrences
which tend to zero in the thermodynamic limit.

Let us now discuss our results. We compute the ground
state of HXXZ for the whole phase diagram using the density
matrix renormalization group (DMRG) [20] for open chains
of up to 192 sites. (We have checked that the accuracy
of the results does not depend on the size of the chain.)
From the ground state, we construct the reduced density
matrix of either two or three spins (not necessarily adjacent)
close to the center of the chain to avoid edge effects. We
then calculate the corresponding concurrences as well as
the tripartite entanglement by means of the entanglement
witness (8) for the whole phase diagram. There exist suitable
multipartite entanglement witnesses that detect GME of
adjacent sites for two-body models [9,10] or global GME
of Dicke states [21,22]. Our method, however, allows us to
choose our reduced system at will without imposing further
symmetries. Our results are summarized in Fig. 2, where we
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FIG. 2. (Color online) Concurrences of a reduced state of two
nonadjacent spins (x,x + r). For N � 1 all the concurrences collapse
to the same value: 1/(N − 1) close to the isotropic ferromagnetic
point (λ = −1+). The reduced density matrices have been calculated
using DMRG simulations with N = 192. For convenience the spin
arrangements are denoted as 12,13, . . . (corresponding to a pair of
nearest-neighbor spins, next to nearest-neighbor spins, etc.); however,
the entanglement is studied close to the middle of the chain. In the
chain of length N the spins correspond to x x + 1,x x + 2, . . . with
x = N/2 − 3. The plotted quantity is dimensionless.
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FIG. 3. (Color online) Mean value of the rotationally invariant
entanglement witness detecting genuine tripartite entanglement for
reduced states of three nonadjacent spins (a) (x,x + 1,x + r) and
(b) (x,x + r,x + s). As λ → −1+ (see the insets) GME is detected
in all the arrangements depicted in (a), and those shown in (b) except
for (135),(137). The reduced density matrices have been calculated
using DMRG simulations with N = 192. For convenience the spin
arrangements are denoted as 123,135, . . .; however, the entanglement
is studied close to the middle of the chain. The plotted quantities are
dimensionless.

display C(ρi i+r ) for different values of r as a function of λ,
particularly near the isotropic point λ = −1. In accordance
with previous results based on bipartite measures [12], we
observe that close to the isotropic ferromagnetic point (i.e.,
λ = −0.999) all concurrences for N � 1 collapse to the same
value 1/(N − 1). To investigate whether or not this feature
of bipartite entanglement is also shared by the multipartite
structure, we investigated the minimum mean value of the
witness tr(Wρi i+r i+s) for different spin arrangements (the spin
i is near the middle of the chain to avoid edge effects). For
adjacent sites (i,i + 1,i + 2) we recover previous results [9],
indicating the presence of GME for λ > −1 [see Fig. 3(a)].
Long-range GME is also detected by the witness for other
spin-arrangements (i,j,k) when at least two site indexes have
different parity [see Fig. 3(b)]. Our results provide evidence
that (1) distant multipartite entanglement is present in the
system and (2) the global SU(2) symmetry is already broken
very close to the QPT, evidencing the sensitivity of GME to
the fine ground state structure.
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V. SUMMARY

As we demonstrated for the ground state of the XXZ
model, the method we provide is not restricted to SU(2)
invariant states and can be applied to any three-qubit states.
It can also be extended to ground and thermal states of
spin-1/2 Hamiltonians in any lattice geometry, not only one
dimension. Notice, however, that while the detection of GME
for SU(2) invariant states is unambiguous, the negativity of
the expectation value of the witness 〈W 〉 is in general only a
sufficient condition for GME.

We have constructed a witness for genuine tripartite en-
tanglement that, although explicitly designed for rotationally
invariant states, is useful to assess the multipartite quantum
correlations of states lying outside such a class. Our method is
general and can be used together with analytical or numerical
methods, e.g., DMRG, exact diagonalization, quantum Monte
Carlo, or, more generally, any technique yielding three-point
correlation functions. We have used such a tool to gather
insight into the structure of quantum correlations of the
many-body ground state of a spin chain close to a first order
quantum phase transition, beyond the standard framework of
bipartite entanglement (see also Ref. [23]).
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the support of Fundació Catalunya–La Pedrera and Spanish
MICINN (FIS208-00784 TOQATA). M.P. acknowledges the
UK EPSRC for a Career Acceleration Fellowship and a grant
from the “New Directions for EPSRC Research Leaders”
initiative (Grant No. EP/G004759/1). G.D.C. and M.P. thank
the EPSRC for funding under the program EP/K029371/1
and the John Templeton Foundation (Grant No. 43467) for
financial support. B.R. thanks the Professor Caldwell Travel
Studentship for support and the hospitality of GIQ at the UAB.

APPENDIX: CONSTRUCTION OF THE WITNESS
OPERATOR

A plane tangent to the surface of the set of biseparable states
is uniquely characterized by a point P and a normal unit vector
û. We choose the point lying on the line between sets B2 and
B3 (later denoted by 	) and define a curve parametrized by r0

as

P(r0) =
⎡
⎣r0,

−1 + 2r0 + √
3
√

−1 + 4r0 − 3r2
0

2
,0

⎤
⎦ (A1)

with r0 > 2/3. Then the normal vector û is the cross-product
of the vector tangent to the curve P(r0):

v1 = d

dr0
P(r0) =

⎡
⎣1,1 +

√
3

2

2 − 3r0√
−1 + 4r0 − 3r2

0

,0

⎤
⎦ , (A2)

and the vector v2 = (0,0,1) parallel to the 	. Therefore, we
have

û = v1 × v2

‖v1‖

= 1

‖v1‖

⎡
⎣1 +

√
3

2

2 − 3r0√
−1 + 4r0 − 3r2

0

, − 1,0

⎤
⎦ . (A3)

Substituting Eq. (A3) in the expression of the witness:

W = u0R0 + u1R1 + u2R2 − û · P, (A4)

we obtain the unnormalized witness in the following form:

W (r0) =
⎛
⎝1 +

√
3

2

2 − 3r0√
−1 + 4r0 − 3r2

0

⎞
⎠ R0

−R1 −
⎛
⎝ √

3(1 − 2r0)

2
√

−1 + 4r0 − 3r2
0

+ 1

2

⎞
⎠ 1. (A5)

The other two witnesses obtained by rotation of the witness
plane by ±2π/3 are

W (r0) =
⎛
⎝1 +

√
3

2

2 − 3r0√
−1 + 4r0 − 3r2

0

⎞
⎠ R0

−
(

1

2
R1 ±

√
3

2
R2

)

−
⎛
⎝ √

3(1 − 2r0)

2
√

−1 + 4r0 − 3r2
0

+ 1

2

⎞
⎠ 1.

By construction the operator W is positive for all bisepara-
ble rotationally invariant states, even those with an imaginary
component since tr(WR3) = 0. Furthermore, W is an entan-
glement witness for genuine tripartite entangled states; i.e.,
it is positive for all biseparable states. For this purpose it is
enough to show that 〈ef |W |ef 〉 � 0 for all |ef 〉 being product
vectors with respect to bipartitions 12|3, 1|23, 13|2. Without
loss of generality we focus on the specific partition and have

〈e12f3| W |e12f3〉 = 〈e12f3|
∫

dU U†WU |e12f3〉
= tr(�|e12f3〉〈e12f3|W ) � 0, (A6)

where we use the fact that W is rotationally invariant and
that the state �|e12f3〉〈e12f3| is rotationally invariant and
either biseparable or separable. Note that Eq. (A6) establishes
equivalence between the biseparability test based on the
witness and the twirling criterion for all real density matrices.
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