709 research outputs found

    The cylindrical Fourier transform

    Get PDF
    In this paper we devise a so-called cylindrical Fourier transform within the Clifford analysis context. The idea is the following: for a fixed vector in the image space the level surfaces of the traditional Fourier kernel are planes perpendicular to that fixed vector. For this Fourier kernel we now substitute a new Clifford-Fourier kernel such that, again for a fixed vector in the image space, its phase is constant on co-axial cylinders w.r.t. that fixed vector. The point is that when restricting to dimension two this new cylindrical Fourier transform coincides with the earlier introduced Clifford-Fourier transform.We are now faced with the following situation: in dimension greater than two we have a first Clifford-Fourier transform with elegant properties but no kernel in closed form, and a second cylindrical one with a kernel in closed form but more complicated calculation formulae. In dimension two both transforms coincide. The paper concludes with the calculation of the cylindrical Fourier spectrum of an L2-basis consisting of generalized Clifford-Hermite functions

    Two powerful theorems in Clifford analysis

    Get PDF
    Two useful theorems in Euclidean and Hermitean Clifford analysis are discussed: the Fischer decomposition and the Cauchy-Kovalevskaya extension

    Bochner-Martinelli formula in superspace

    Full text link
    In a series of recent papers, a harmonic and hypercomplex function theory in superspace has been established and amply developed. In this paper, we address the problem of establishing Cauchy integral formulae in the framework of Hermitian Clifford analysis in superspace. This allows us to obtain a successful extension of the classical Bochner-Martinelli formula to superspace by means of the corresponding projections on the space of spinor-valued superfunctions.Comment: 29 pages. arXiv admin note: text overlap with arXiv:1804.0096

    Hermitian clifford analysis

    Get PDF
    This paper gives an overview of some basic results on Hermitian Clifford analysis, a refinement of classical Clifford analysis dealing with functions in the kernel of two mutually adjoint Dirac operators invariant under the action of the unitary group. The set of these functions, called Hermitian monogenic, contains the set of holomorphic functions in several complex variables. The paper discusses, among other results, the Fischer decomposition, the Cauchy–Kovalevskaya extension problem, the axiomatic radial algebra, and also some algebraic analysis of the system associated with Hermitian monogenic functions. While the Cauchy–Kovalevskaya extension problem can be carried out for the Hermitian monogenic system, this system imposes severe constraints on the initial Cauchy data. There exists a subsystem of the Hermitian monogenic system in which these constraints can be avoided. This subsystem, called submonogenic system, will also be discussed in the paper

    Gelfand-Tsetlin Bases of Orthogonal Polynomials in Hermitean Clifford Analysis

    Get PDF
    An explicit algorithmic construction is given for orthogonal bases for spaces of homogeneous polynomials, in the context of Hermitean Clifford analysis, which is a higher dimensional function theory centred around the simultaneous null solutions of two Hermitean conjugate complex Dirac operators.Comment: submitte

    Hilbert transforms in Clifford analysis

    Get PDF
    The Hilbert transform on the real line has applications in many fields. In particular in one–dimensional signal processing, the Hilbert operator is used to extract global as well as instantaneous characteristics, such as frequency, amplitude and phase, from real signals. The multidimensional approach to the Hilbert transform usually is a tensorial one, considering the so-called Riesz transforms in each of the cartesian variables separately. In this paper we give an overview of generalized Hilbert transforms in Euclidean space, developed within the framework of Clifford analysis. Roughly speaking, this is a function theory of higher dimensional holomorphic functions, which is particularly suited for a treatment of multidimensional phenomena since all dimensions are encompassed at once as an intrinsic feature

    A General Geometric Fourier Transform

    Full text link
    The increasing demand for Fourier transforms on geometric algebras has resulted in a large variety. Here we introduce one single straight forward definition of a general geometric Fourier transform covering most versions in the literature. We show which constraints are additionally necessary to obtain certain features like linearity or a shift theorem. As a result, we provide guidelines for the target-oriented design of yet unconsidered transforms that fulfill requirements in a specific application context. Furthermore, the standard theorems do not need to be shown in a slightly different form every time a new geometric Fourier transform is developed since they are proved here once and for all.Comment: First presented in Proc. of The 9th Int. Conf. on Clifford Algebras and their Applications, (2011

    Introductory clifford analysis

    Get PDF
    In this chapter an introduction is given to Clifford analysis and the underlying Clifford algebras. The functions under consideration are defined on Euclidean space and take values in the universal real or complex Clifford algebra, the structure and properties of which are also recalled in detail. The function theory is centered around the notion of a monogenic function, which is a null solution of a generalized Cauchy–Riemann operator, which is rotation invariant and factorizes the Laplace operator. In this way, Clifford analysis may be considered as both a generalization to higher dimension of the theory of holomorphic functions in the complex plane and a refinement of classical harmonic analysis. A notion of monogenicity may also be associated with the vectorial part of the Cauchy–Riemann operator, which is called the Dirac operator; some attention is paid to the intimate relation between both notions. Since a product of monogenic functions is, in general, no longer monogenic, it is crucial to possess some tools for generating monogenic functions: such tools are provided by Fueter’s theorem on one hand and the Cauchy–Kovalevskaya extension theorem on the other hand. A corner stone in this function theory is the Cauchy integral formula for representation of a monogenic function in the interior of its domain of monogenicity. Starting from this representation formula and related integral formulae, it is possible to consider integral transforms such as Cauchy, Hilbert, and Radon transforms, which are important both within the theoretical framework and in view of possible applications

    The Clifford-Fourier integral kernel in even dimensional Euclidean space

    Get PDF
    AbstractRecently, we devised a promising new multi-dimensional integral transform within the Clifford analysis setting, the so-called Fourier–Bessel transform. In the specific case of dimension two, it coincides with the Clifford–Fourier transform introduced earlier as an operator exponential. Moreover, the L2-basis elements, consisting of generalized Clifford–Hermite functions, appear to be simultaneous eigenfunctions of both integral transforms. In the even dimensional case, this allows us to express the Clifford–Fourier transform in terms of the Fourier–Bessel transform, leading to a closed form of the Clifford–Fourier integral kernel
    • …
    corecore