114 research outputs found
Extensive reuse of soda-lime waste glass in fly ash-based geopolymers
The possibility of extensive incorporation of soda-lime waste glass in the synthesis of fly ash-based geopolymers was investigated. Using waste glass as silica supplier avoids the use of water glass solution as chemical activator. The influence of the addition of waste glass on the microstructure and strength of fly ash-based geopolymers was studied through microstructural and mechanical characterization. Leaching analyses were also carried out. The samples were developed changing the SiO2/Al2O3 molar ratio and the molarity of the sodium hydroxide solution used as alkaline activator. The results suggest that increasing the amount of waste glass as well as increasing the molarity of the solution lead to the formation of zeolite crystalline phases and an improvement of the mechanical strength. Leaching results confirmed that the new geopolymers have the capability to immobilize heavy metal ions
Electrophoretic deposition of nanostructured-TiO2/chitosan composite coatings on stainless steel
Novel chitosan composite coatings containing titania nanoparticles (n-TiO2) for biomedical applications were developed by electrophoretic deposition (EPD) from ethanol–water suspensions. The optimal ethanol–water ratio was studied in order to avoid bubble formation during the EPD process and to ensure homogeneous coatings. Different n-TiO2 contents (0.5–10 g L−1) were studied for a fixed chitosan concentration (0.5 g L−1) and the properties of the electrophoretic coatings obtained were characterized. Coating composition was analyzed by thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. Scanning electron microscopy (SEM) was employed to study both the surface and the cross section morphology of the coatings, and the thicknesses (2–6 μm) of the obtained coatings were correlated with the initial ceramic content. Contact angle measurements, as a preliminary study to predict hypothetic protein attachment on the coatings, were performed for different samples and the influence of a second chitosan layer on top of the coatings was also tested. Finally, the electrochemical behavior of the coatings, evaluated by polarization curves in DMEM at 37 °C, was studied in order to assess the corrosion resistance provided by the n-TiO2/chitosan coatings
Recommended from our members
Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios
The Mediterranean climate is expected to become warmer and drier during the twenty-first century. Mediterranean Sea response to climate change could be modulated by the choice of the socio-economic scenario as well as the choice of the boundary conditions mainly the Atlantic hydrography, the river runoff and the atmospheric fluxes. To assess and quantify the sensitivity of the Mediterranean Sea to the twenty-first century climate change, a set of numerical experiments was carried out with the regional ocean model NEMOMED8 set up for the Mediterranean Sea. The model is forced by air–sea fluxes derived from the regional climate model ARPEGE-Climate at a 50-km horizontal resolution. Historical simulations representing the climate of the period 1961–2000 were run to obtain a reference state. From this baseline, various sensitivity experiments were performed for the period 2001–2099, following different socio-economic scenarios based on the Special Report on Emissions Scenarios. For the A2 scenario, the main three boundary forcings (river runoff, near-Atlantic water hydrography and air–sea fluxes) were changed one by one to better identify the role of each forcing in the way the ocean responds to climate change. In two additional simulations (A1B, B1), the scenario is changed, allowing to quantify the socio-economic uncertainty. Our 6-member scenario simulations display a warming and saltening of the Mediterranean. For the 2070–2099 period compared to 1961–1990, the sea surface temperature anomalies range from +1.73 to +2.97 °C and the SSS anomalies spread from +0.48 to +0.89. In most of the cases, we found that the future Mediterranean thermohaline circulation (MTHC) tends to reach a situation similar to the eastern Mediterranean Transient. However, this response is varying depending on the chosen boundary conditions and socio-economic scenarios. Our numerical experiments suggest that the choice of the near-Atlantic surface water evolution, which is very uncertain in General Circulation Models, has the largest impact on the evolution of the Mediterranean water masses, followed by the choice of the socio-economic scenario. The choice of river runoff and atmospheric forcing both have a smaller impact. The state of the MTHC during the historical period is found to have a large influence on the transfer of surface anomalies toward depth. Besides, subsurface currents are substantially modified in the Ionian Sea and the Balearic region. Finally, the response of thermosteric sea level ranges from +34 to +49 cm (2070–2099 vs. 1961–1990), mainly depending on the Atlantic forcing
A database of whole-body action videos for the study of action, emotion, and untrustworthiness
We present a database of high-definition (HD) videos for the study of traits inferred from whole-body actions. Twenty-nine actors (19 female) were filmed performing different actions—walking, picking up a box, putting down a box, jumping, sitting down, and standing and acting—while conveying different traits, including four emotions (anger, fear, happiness, sadness), untrustworthiness, and neutral, where no specific trait was conveyed. For the actions conveying the four emotions and untrustworthiness, the actions were filmed multiple times, with the actor conveying the traits with different levels of intensity. In total, we made 2,783 action videos (in both two-dimensional and three-dimensional format), each lasting 7 s with a frame rate of 50 fps. All videos were filmed in a green-screen studio in order to isolate the action information from all contextual detail and to provide a flexible stimulus set for future use. In order to validate the traits conveyed by each action, we asked participants to rate each of the actions corresponding to the trait that the actor portrayed in the two-dimensional videos. To provide a useful database of stimuli of multiple actions conveying multiple traits, each video name contains information on the gender of the actor, the action executed, the trait conveyed, and the rating of its perceived intensity. All videos can be downloaded free at the following address: http://www-users.york.ac.uk/~neb506/databases.html. We discuss potential uses for the database in the analysis of the perception of whole-body actions
Linking mixing processes and climate variability to the heat content distribution of the Eastern Mediterranean abyss
The heat contained in the ocean (OHC) dominates the Earth’s energy budget and hence represents a fundamental parameter for understanding climate changes. However, paucity of observational data hampers our knowledge on OHC variability, particularly in abyssal areas. Here, we analyze water characteristics, observed during the last three decades in the abyssal Ionian Sea (Eastern Mediterranean), where two competing convective sources of bottom water exist. We find a heat storage of ~1.6 W/m2– twice that assessed globally in the same period – exceptionally well-spread throughout the local abyssal layers. Such an OHC accumulation stems from progressive warming and salinification of the Eastern Mediterranean, producing warmer near-bottom waters. We analyze a new process that involves convectively-generated waters reaching the abyss as well as the triggering of a diapycnal mixing due to rough bathymetry, which brings to a warming and thickening of the bottom layer, also influencing water-column potential vorticity. This may affect the prevailing circulation, altering the local cyclonic/anticyclonic long-term variability and hence precondition future water-masses formation and the redistribution of heat along the entire water-column
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
Take an Emotion Walk: Perceiving Emotions from Gaits Using Hierarchical Attention Pooling and Affective Mapping
We present an autoencoder-based semi-supervised approach to classify
perceived human emotions from walking styles obtained from videos or
motion-captured data and represented as sequences of 3D poses. Given the motion
on each joint in the pose at each time step extracted from 3D pose sequences,
we hierarchically pool these joint motions in a bottom-up manner in the
encoder, following the kinematic chains in the human body. We also constrain
the latent embeddings of the encoder to contain the space of
psychologically-motivated affective features underlying the gaits. We train the
decoder to reconstruct the motions per joint per time step in a top-down manner
from the latent embeddings. For the annotated data, we also train a classifier
to map the latent embeddings to emotion labels. Our semi-supervised approach
achieves a mean average precision of 0.84 on the Emotion-Gait benchmark
dataset, which contains both labeled and unlabeled gaits collected from
multiple sources. We outperform current state-of-art algorithms for both
emotion recognition and action recognition from 3D gaits by 7%--23% on the
absolute. More importantly, we improve the average precision by 10%--50% on the
absolute on classes that each makes up less than 25% of the labeled part of the
Emotion-Gait benchmark dataset.Comment: In proceedings of the 16th European Conference on Computer Vision,
2020. Total pages 18. Total figures 5. Total tables
Signature Movements Lead to Efficient Search for Threatening Actions
The ability to find and evade fighting persons in a crowd is potentially life-saving. To investigate how the visual system processes threatening actions, we employed a visual search paradigm with threatening boxer targets among emotionally-neutral walker distractors, and vice versa. We found that a boxer popped out for both intact and scrambled actions, whereas walkers did not. A reverse correlation analysis revealed that observers' responses clustered around the time of the “punch", a signature movement of boxing actions, but not around specific movements of the walker. These findings support the existence of a detector for signature movements in action perception. This detector helps in rapidly detecting aggressive behavior in a crowd, potentially through an expedited (sub)cortical threat-detection mechanism
Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research
This paper is the outcome of a workshop held in Rome in November 2011 on the occasion of the 25th anniversary of the POEM (Physical Oceanography of the Eastern Mediterranean) program. In the workshop discussions, a number of unresolved issues were identified for the physical and biogeochemical properties of the Mediterranean Sea as a whole, i.e., comprising the Western and Eastern sub-basins. Over the successive two years, the related ideas were discussed among the group of scientists who participated in the workshop and who have contributed to the writing of this paper.
Three major topics were identified, each of them being the object of a section divided into a number of different sub-sections, each addressing a specific physical, chemical or biological issue:
1. Assessment of basin-wide physical/biochemical properties, of their variability and interactions.
2. Relative importance of external forcing functions (wind stress, heat/moisture fluxes, forcing through straits) vs. internal variability.
3. Shelf/deep sea interactions and exchanges of physical/biogeochemical properties and how they affect the sub-basin circulation and property distribution.
Furthermore, a number of unresolved scientific/methodological issues were also identified and are reported in each sub-section after a short discussion of the present knowledge. They represent the collegial consensus of the scientists contributing to the paper. Naturally, the unresolved issues presented here constitute the choice of the authors and therefore they may not be exhaustive and/or complete. The overall goal is to stimulate a broader interdisciplinary discussion among the scientists of the Mediterranean oceanographic community, leading to enhanced collaborative efforts and exciting future discoveries
- …