12,774 research outputs found
The Gould's Belt distance survey
Very Long Baseline Interferometry (VLBI) observations can provide the
position of compact radio sources with an accuracy of order 50
micro-arcseconds. This is sufficient to measure the trigonometric parallax and
proper motions of any object within 500 pc of the Sun to better than a few
percent. Because they are magnetically active, young stars are often associated
with compact radio emission detectable using VLBI techniques. Here we will show
how VLBI observations have already constrained the distance to the most often
studied nearby regions of star-formation (Taurus, Ophiuchus, Orion, etc.) and
have started to provide information on their internal structure and kinematics.
We will then briefly describe a large project (called The Gould's Belt Distance
Survey) designed to provide a detailed view of star-formation in the Solar
neighborhood using VLBI observations.Comment: To be published in the Revista Mexicana de Astronomia y Astrofisica
(Serie de Conferencias
The largest oxigen bearing organic molecule repository
We present the first detection of complex aldehydes and isomers in three
typical molecular clouds located within 200pc of the center of our Galaxy.
We find very large abundances of these complex organic molecules (COMs) in
the central molecular zone (CMZ), which we attribute to the ejection of COMs
from grain mantles by shocks. The relative abundances of the different COMs
with respect to that of CH3OH are strikingly similar for the three sources,
located in very different environments in the CMZ. The similar relative
abundances point toward a unique grain mantle composition in the CMZ. Studying
the Galactic center clouds and objects in the Galactic disk having large
abundances of COMs, we find that more saturated molecules are more abundant
than the non-saturated ones. We also find differences between the relative
abundance between COMs in the CMZ and the Galactic disk, suggesting different
chemical histories of the grain mantles between the two regions in the Galaxy
for the complex aldehydes. Different possibilities for the grain chemistry on
the icy mantles in the GC clouds are briefly discussed. Cosmic rays can play an
important role in the grain chemistry. With these new detections, the molecular
clouds in the Galactic center appear to be one of the best laboratories for
studying the formation of COMs in the Galaxy.Comment: 20 pages, 4 figures, accepted in Ap
A Chandra observation of the millisecond X-ray pulsar IGR J17511-3057
IGR J17511-3057 is a low mass X-ray binary hosting a neutron star and is one
of the few accreting millisecond X-ray pulsars with X-ray bursts. We report on
a 20ksec Chandra grating observation of IGR J17511-3057, performed on 2009
September 22. We determine the most accurate X-ray position of IGR J17511-3057,
alpha(J2000) = 17h 51m 08.66s, delta(J2000) = -30deg 57' 41.0" (90% uncertainty
of 0.6"). During the observation, a ~54sec long type-I X-ray burst is detected.
The persistent (non-burst) emission has an absorbed 0.5-8keV luminosity of 1.7
x 10^36 erg/sec (at 6.9kpc) and can be well described by a thermal
Comptonization model of soft, ~0.6keV, seed photons up-scattered by a hot
corona. The type-I X-ray burst spectrum, with average luminosity over the 54sec
duration L(0.5-8keV)=1.6 x 10^37 erg/sec, can be well described by a blackbody
with kT_(bb)~1.6keV and R_(bb)~5km. While an evolution in temperature of the
blackbody can be appreciated throughout the burst (average peak
kT_(bb)=2.5(+0.8/-0.4)keV to tail kT_(bb)=1.3(+0.2/-0.1)keV), the relative
emitting surface shows no evolution. The overall persistent and type-I burst
properties observed during the Chandra observation are consistent with what was
previously reported during the 2009 outburst of IGR J17511-3057.Comment: 6 pages, 4 figures, accepted for publication in ApJ (2012-06-08
Estimating percentages of fusarium-damaged kernels in hard wheat by near-infrared hyperspectral imaging
Fusarium head blight (FHB) is among the most common fungal diseases affecting wheat, resulting in decreased yield, low-density kernels, and production of the mycotoxin deoxynivalenol, a compound toxic to humans and livestock. Human visual analysis of representative wheat samples has been the traditional method for FHB assessment in both official inspection and plant breeding operations. While not requiring specialized equipment, visual analysis is dependent on a trained and consistent workforce, such that in the absence of these aspects, biases may arise among inspectors and evaluation dates. This research was intended to avoid such pitfalls by using longer wavelength radiation than the visible using hyperspectral imaging (HSI) on individual kernels. Linear discriminant analysis models to differentiate between sound and scab-damaged kernels were developed based on mean of reflectance values of the interior pixels of each kernel at four wavelengths (1100, 1197, 1308, and 1394 nm). Other input variables were examined, including kernel morphological properties and histogram features from the pixel responses of selected wavelengths of each kernel. The results indicate the strong potential of HSI in estimating fusarium damage. However, improvement in aligning this procedure to visual analysis is hampered by the inherent level of subjectivity in visual analysis
Unveiling the nature of IGR J17177-3656 with X-ray, NIR and Radio observations
We report on the first broad-band (1-200 keV) simultaneous Chandra-INTEGRAL
observations of the recently discovered hard X-ray transient IGR J17177-3656
that took place on 2011, March 22, about two weeks after the source discovery.
The source had an average absorbed 1-200 keV flux of about 8x10^(-10) erg
cm^(-2) s^(-1). We extracted a precise X-ray position of IGR J17177-3656, RA=17
17 42.62, DEC= -36 56 04.5 (90% uncertainty of 0.6"). We also report Swift,
near infrared and quasi simultaneous radio follow-up observations. With the
multi-wavelength information at hand, we propose IGR J17177-3656 is a low-mass
X-ray binary, seen at high inclination, probably hosting a black hole.Comment: 8 pages, 8 figures, accepted for publication in Ap
The Caveolin-1 Connection to Cell Death and Survival
Nunez, S (Nunez, S.)[ 1,4 ] 1. Fac Med, CEMC, Lab Comunicac Celulares, Santiago, Chile. 4. Univ Talca, Fac Hlth Sci, Talca, ChileCaveolins are a family of membrane proteins required for the formation of small plasma membrane invaginations called caveolae that are implicated in cellular trafficking processes. In addition to this structural role, these scaffolding proteins modulate numerous intracellular signaling pathways; often via direct interaction with specific binding partners. Caveolin-1 is particularly well-studied in this respect and has been attributed a large variety of functions. Thus, Caveolin-1 also represents the best-characterized isoform of this family with respect to its participation in cancer. Rather strikingly, available evidence indicates that Caveolin-1 belongs to a select group of proteins that function, depending on the cellular settings, both as tumor suppressor and promoter of cellular traits commonly associated with enhanced malignant behavior, such as metastasis and multi-drug resistance. The mechanisms underlying such ambiguity in Caveolin-1 function constitute an area of great interest. Here, we will focus on discussing how Caveolin-1 modulates cell death and survival pathways and how this may contribute to a better understanding of the ambiguous role this protein plays in cancer
Simultaneous multiwavelength observations of the Low/Hard State of the X-ray transient source SWIFT J1753.5-0127
We report the results of simultaneous multiwavelength observations of the
X-ray transient source SWIFT J1753.5-0127 performed with INTEGRAL, RXTE, NTT,
REM and VLA on 2005 August 10-12. The source, which underwent an X-ray outburst
since 2005 May 30, was observed during the INTEGRAL Target of Opportunity
program dedicated to new X-ray novae located in the Galactic Halo. Broad-band
spectra and fast timing variability properties of SWIFT J1753.5-0127 are
analyzed together with the optical, near infra-red and radio data. We show that
the source was significantly detected up to 600 keV with Comptonization
parameters and timing properties typical of the so-called Low/Hard State of
black hole candidates. We build a spectral energy distribution and we show that
SWIFT J1753.5-0127 does not follow the usual radio/X-ray correlation of X-ray
binaries in the Low/Hard State. We give estimates of distance and mass. We
conclude that SWIFT J1753.5-0127 belongs to the X-ray nova class and that it is
likely a black hole candidate transient source of the Galactic Halo which
remained in the Low/Hard State during its main outburst. We discuss our results
within the context of Comptonization and jet models.Comment: Accepted for publication in ApJ, 25 pages, 4 tables, 11 figures (3 in
color
Blends of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with Fruit Pulp Biowaste Derived Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate-co-3-Hydroxyhexanoate) for Organic Recycling Food Packaging
[EN] In the present study, a new poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) [P(3HB-co-3HV-co-3HHx)] terpolyester with approximately 68 mol% of 3-hydroxybutyrate (3HB), 17 mol% of 3-hydroxyvalerate (3HV), and 15 mol% of 3-hydroxyhexanoate (3HHx) was obtained via the mixed microbial culture (MMC) technology using fruit pulps as feedstock, a processing by-product of the juice industry. After extraction and purification performed in a single step, the P(3HB-co-3HV-co-3HHx) powder was melt-mixed, for the first time, in contents of 10, 25, and 50 wt% with commercial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Thereafter, the resultant doughs were thermo-compressed to obtain highly miscible films with good optical properties, which can be of interest in rigid and semirigid organic recyclable food packaging applications. The results showed that the developed blends exhibited a progressively lower melting enthalpy with increasing the incorporation of P(3HB-co-3HV-co-3HHx), but retained the PHB crystalline morphology, albeit with an inferred lower crystalline density. Moreover, all the melt-mixed blends were thermally stable up to nearly 240 degrees C. As the content of terpolymer increased in the blends, the mechanical response of their films showed a brittle-to-ductile transition. On the other hand, the permeabilities to water vapor, oxygen, and, more notably, limonene were seen to increase. On the overall, this study demonstrates the value of using industrial biowaste derived P(3HB-co-3HV-co-3HHx) terpolyesters as potentially cost-effective and sustainable plasticizing additives to balance the physical properties of organic recyclable polyhydroxyalkanoate (PHA)-based food packaging materialsThis research was supported by the Spanish Ministry of Science and Innovation (MICI) project RTI2018-097249-B-C21 and by the EU H2020 BBI JU project USABLE PAKAGING (reference number 836884)Melendez-Rodriguez, B.; Torres-Giner, S.; Reis, MAM.; Silva, F.; Matos, M.; Cabedo, L.; Lagarón, JM. (2021). Blends of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with Fruit Pulp Biowaste Derived Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate-co-3-Hydroxyhexanoate) for Organic Recycling Food Packaging. Polymers. 13(7):1-19. https://doi.org/10.3390/polym13071155S11913
Use of aequorin-based indicators for monitoring Ca2+ in acidic organelles
Over the last years, there is accumulating evidence that acidic organelles can accumulate and release Ca2+ upon cell activation. Hence, reliable recording of Ca2+ dynamics in these compartments is essential for understanding the physiopathological aspects of acidic organelles. Genetically encoded Ca2+ indicators (GECIs) are valuable tools to monitor Ca2+ in specific locations, although their use in acidic compartments is challenging due to the pH sensitivity of most available fluorescent GECIs. By contrast, bioluminescent GECIs have a combination of features (marginal pH sensitivity, low background, no phototoxicity, no photobleaching, high dynamic range and tunable affinity) that render them advantageous to achieve an enhanced signal-to-noise ratio in acidic compartments. This article reviews the use of bioluminescent aequorin-based GECIs targeted to acidic compartments. A need for more measurements in highly acidic compartments is identified
Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil
New packaging materials based on green composite sheets consisting of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and coconut fibers (CFs) were obtained by twin-screw extrusion (TSE) followed by compression molding. The effect of varying the CF weight content, i.e. 1, 3, 5, and 10wt.-%, and the screw speed during melt processing, i.e. 75, 150, and 225rpm, on both the aspect ratio and dispersion of the fibers was analyzed and related to the properties of the compression-molded sheets. Finally, the CFs were impregnated with oregano essential oil (OEO) by an innovative spray coating methodology and then incorporated into PHBV at the optimal processing conditions. The functionalized green composite sheets presented bacteriostatic effect against Staphylococcus aureus from fiber contents as low as 3wt.-%. Therefore, the here-prepared CFs can be successfully applied as natural vehicles to entrap extracts and develop green composites of high interest in active food packaging to provide protection and shelf life extension.This research was funded by the EU H2020 project YPACK (reference number 773872), the Spanish Ministry of Economy and Competitiveness (MINECO) project AGL2015-63855-C2-1-R, the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), and the BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund (ERDF) under the scope of Norte2020 – Programa Operacional Regional do Norte. Prof. Sergio Torres-Giner wants to thank the European Cooperation in Science and Technology (COST) Action FP1405, ActInPak, for financial support during his Short Term Scientific Mission (STSM) at the University of Minho.info:eu-repo/semantics/publishedVersio
- …