17 research outputs found

    Selecting Effective Examples to Train Students for Peer Review of Open‐Ended Problem Solutions

    Get PDF
    Background Students conducting peer review on authentic artifacts require training. In the training studied here, individual students reviewed (score and provide feedback on) a randomly selected prototypical solution to a problem. Afterwards, they are shown a side-by-side comparison of their review and an expert’s review, along with prompts to reflect on the differences and similarities. Individuals were then assigned a peer team’s solution to review. Purpose This paper explores how the characteristics of five different prototypical solutions used in training (and their associated expert evaluations) impacted students’ abilities to score peer teams’ solutions. Design/Method An expert rater scored the prototypical solutions and 147 student teams’ solutions that were peer reviewed using an eight item rubric. Differences between the scores assigned by the expert and a student to a prototypical solution and an actual team solution were used to compute a measure of the student’s improvement as a peer reviewer from training to actual peer review. ANOVA testing with Tukey’s post-hoc analysis was done to identify statistical differences in improvement based on the prototypical solutions students saw during the training phase. Results Statistically significant differences were found in the amount of error a student made during peer review between high and low quality prototypical solutions seen by students during training. Specifically, a lower quality training solution (and associated expert evaluation) resulted in more accurate scoring during peer review. Conclusions While students typically ask to see exemplars of “good solutions”, this research suggests that there is likely greater value, for the purpose of preparing students to score peers’ solutions, in students seeing a low-quality solution and its corresponding expert review

    First Year Engineering Students’ Identification of Models in Engineering

    Get PDF
    Background To succeed in engineering careers, students must be able to create and apply models to certain problems. The different types of models include physical, mathematical, computational, graphical, and financial, which are used both in academics, research, and industry. However, many students struggle to define, create, and apply relevant models in their engineering courses. Purpose (Research Questions) The research questions investigated in this study are: (1) What types of models do engineering students identify before and after completing a first-year engineering course? (2) How do students’ responses compare across different courses (a graphical communications course - EGR 120 and a programming course - EGR 115), and sections? Design/Methods The data used for this study were collected in two introductory first-year engineering courses offered during Fall 2019, EGR 115 and EGR 120. Students’ responses to a survey about modeling were qualitatively analyzed. The survey was given at the beginning and the end of the courses. The data analyzed consisted of 560 pre and post surveys for EGR 115 and 384 pre and post surveys for EGR 120. Results Once the analysis is complete, we are hoping to find that the students can better define and apply models in their engineering courses after they have completed the EGR 115 and/or EGR 120 courses

    Student Awareness of Models in First-Year Engineering Courses

    Get PDF
    Contribution: This study assesses more than 800 students\u27 awareness of engineering model types before and after taking two first-year engineering courses across two semesters and evaluates the effect of each course. Background: All engineers must be able to apply and create models to be effective problem solvers, critical thinkers, and innovative designers. To help them develop these skills, as a first step, it is essential to assess how to increase students\u27 awareness of engineering models. According to Bloom\u27s taxonomy, the lower remember and understand levels, which encompass awareness, are necessary for achieving the higher levels, such as apply, analyze, evaluate, and create. Research Questions: To what extent did student awareness of model types change after taking introductory engineering courses? To what extent did student awareness of model types differ by course or semester? Methodology: In this study, a survey was designed and administered at the beginning and end of the semester in two first-year engineering courses during two semesters in a mid-sized private school. The survey asked students questions about their definition of engineering modeling and different types of models. Findings: Overall, student awareness of model types increased from the beginning of the semester toward the end of the semester, across both semesters and courses. There were some differences between course sections, however, the students\u27 awareness of the models at the end of the academic year was similar for both groups

    Small Wins - Big Impact: Narratives from Behind the Scenes

    Get PDF
    All instructors, administrators, and researchers that have engaged in the endeavor to teach, oversee, and/or transform first-year engineering courses have a story to tell about their successes and struggles. In this workshop, we use narrative inquiry to listen to participants’ stories about first-year engineering programs. Based on the analyses of these stories and deduced patterns, a few key struggles will be teased out to guide this interactive workshop. All participants will then further tell their stories of relevant experiences. Our goal is to address struggles and disseminate successes with first-year engineering programs for adoption and adaptation. Our goal is that all attendees will leave this workshop with a better understanding of their own stories and key takeaways that they can apply to first-year engineering programs at their own institutions

    Students’ Perceptions of and Responses to Teaching Assistant and Peer Feedback

    Get PDF
    Authentic open-ended problems are increasingly appearing in university classrooms at all levels. Formative feedback that leads to learning and improved student work products is a challenge, particularly in large enrollment courses. This is a case study of one first-year engineering student team’s experience with teaching assistant and peer feedback during a series of open-ended mathematical modeling problems called Model-Eliciting Activities. The goal of this study was to gain deep insight into the interactions between students, feedback providers, and written feedback by examining one team’s perceptions of the feedback they received and the changes they made to their solutions based on their feedback. The practical purpose of this work is to begin to make recommendations to improve students’ interactions with written feedback. The data sources consisted of individual student interviews, videos of the team’s meetings to revise their solutions, the team’s iteratively-developed solutions, the team’s documented changes to the their solutions, and the written feedback they received from their teaching assistant and peers. The students explained that helpful peer feedback requires a time commitment, focuses on the mathematical model, and goes beyond praise to prompt change. The students also stated that generic TA feedback was not helpful. The greatest difference between the students’ perceptions of TA and peer feedback was that the TA had influence over the team’s grade and therefore the TA feedback was deemed more important. Feedback strategies to increase peer participation and improve teaching assistant training are described. Suggestions for continued research on feedback are provided

    Epidemiology of Escherichia coli bacteraemia in England: results of an enhanced sentinel surveillance programme

    Get PDF
    Background: Escherichia coli causes over one third of the bacteraemia cases in England each year, and the incidence of these infections is increasing. Aim: To determine the underlying risk factors associated with E. coli bacteraemia. Methods: A three month enhanced sentinel surveillance study involving 35 National Health Service hospitals was undertaken in the winter of 2012/13 to collect risk factor information and further details on the underlying source of infection to augment data already collected by the English national surveillance programme. Antimicrobial susceptibility results for E. coli isolated from blood and urine were also collected. Findings: A total of 1,731 cases of E. coli bacteraemia were included. The urogenital tract was the most commonly reported source of infection (51.2% of cases) with prior treatment for a urinary tract infection being the largest independent effect associated with this infection source. Half of all patients had prior healthcare exposure in the month prior to the bacteraemia with antimicrobial therapy and urinary catheterisation being reported in one third and one fifth of these patients. Prior healthcare exposure was associated with a higher proportion of antibiotic non-susceptibility in the blood culture isolates (P=0.001). Conclusion: Analysis of risk factors suggests potential community and hospital-related interventions particularly better use of urinary catheters and improved antibiotic management of urinary tract infections. As part of the latter strategy, antibiotic resistance profiles need to be closely monitored to ensure treatment guidelines are up to date to limit inappropriate empiric therapy

    Epigenetics and developmental programming of welfare and production traits in farm animals

    Get PDF
    The concept that postnatal health and development can be influenced by events that occur in utero originated from epidemiological studies in humans supported by numerous mechanistic (including epigenetic) studies in a variety of model species. Referred to as the ‘developmental origins of health and disease’ or ‘DOHaD’ hypothesis, the primary focus of large-animal studies until quite recently had been biomedical. Attention has since turned towards traits of commercial importance in farm animals. Herein we review the evidence that prenatal risk factors, including suboptimal parental nutrition, gestational stress, exposure to environmental chemicals and advanced breeding technologies, can determine traits such as postnatal growth, feed efficiency, milk yield, carcass composition, animal welfare and reproductive potential. We consider the role of epigenetic and cytoplasmic mechanisms of inheritance, and discuss implications for livestock production and future research endeavours. We conclude that although the concept is proven for several traits, issues relating to effect size, and hence commercial importance, remain. Studies have also invariably been conducted under controlled experimental conditions, frequently assessing single risk factors, thereby limiting their translational value for livestock production. We propose concerted international research efforts that consider multiple, concurrent stressors to better represent effects of contemporary animal production systems

    Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The literature suggests a beneficial effect of motor imagery (MI) if combined with physical practice, but detailed descriptions of MI training session (MITS) elements and temporal parameters are lacking. The aim of this review was to identify the characteristics of a successful MITS and compare these for different disciplines, MI session types, task focus, age, gender and MI modification during intervention.</p> <p>Methods</p> <p>An extended systematic literature search using 24 databases was performed for five disciplines: Education, Medicine, Music, Psychology and Sports. References that described an MI intervention that focused on motor skills, performance or strength improvement were included. Information describing 17 MITS elements was extracted based on the PETTLEP (physical, environment, timing, task, learning, emotion, perspective) approach. Seven elements describing the MITS temporal parameters were calculated: study duration, intervention duration, MITS duration, total MITS count, MITS per week, MI trials per MITS and total MI training time.</p> <p>Results</p> <p>Both independent reviewers found 96% congruity, which was tested on a random sample of 20% of all references. After selection, 133 studies reporting 141 MI interventions were included. The locations of the MITS and position of the participants during MI were task-specific. Participants received acoustic detailed MI instructions, which were mostly standardised and live. During MI practice, participants kept their eyes closed. MI training was performed from an internal perspective with a kinaesthetic mode. Changes in MI content, duration and dosage were reported in 31 MI interventions. Familiarisation sessions before the start of the MI intervention were mentioned in 17 reports. MI interventions focused with decreasing relevance on motor-, cognitive- and strength-focused tasks. Average study intervention lasted 34 days, with participants practicing MI on average three times per week for 17 minutes, with 34 MI trials. Average total MI time was 178 minutes including 13 MITS. Reporting rate varied between 25.5% and 95.5%.</p> <p>Conclusions</p> <p>MITS elements of successful interventions were individual, supervised and non-directed sessions, added after physical practice. Successful design characteristics were dominant in the Psychology literature, in interventions focusing on motor and strength-related tasks, in interventions with participants aged 20 to 29 years old, and in MI interventions including participants of both genders. Systematic searching of the MI literature was constrained by the lack of a defined MeSH term.</p

    Workshop 3: Small Wins, Big Impacts: Narratives from inside the Classroom

    No full text
    All students, instructors, and researchers that have participated in, taught, developed, or revised an engineering course have a story to tell about their successes and struggles. This workshop presents a well-structured environment for participants to share their own stories and listen to other stories. In this workshop, we use narrative inquiry to listen to participants’ stories about curricular design. Based on the analyses of these stories and deduced patterns, a few key struggles will be teased out to guide this interactive workshop. All participants will then further tell their stories of success relevant to the identified struggles. Our goal is to disseminate successes for adoption and adaptation. Our goal is that all attendees will leave this workshop with a better understanding of their own stories and key takeaways that they can apply at their own institutions

    Security issues in QCA circuit design: power analysis attacks

    No full text
    Quantum-dot cellular automata (QCA) technology has advantages of fast computation performance, high density and low power consumption. Thus, it is believed that QCA is attractive for designing future digital systems. Side channel attacks including power analysis attacks have become a significant threat to the security of cryptographic circuits using CMOS technology. A power analysis attack can reveal the secret key of a cryptographic cipher by measuring the power consumption of the cipher's hardware platform while it is encrypting or decrypting data. As the power consumption of QCA circuits is extremely low when compared to their CMOS counterparts, it may be possible to build cryptographic circuits that are immune to power analysis attacks by using QCA technology. Therefore, in this chapter an investigation into both the best and worst case scenarios for attackers is carried out to ascertain if QCA circuits have such an advantage. A more efficient QCA design of a sub-module of the Serpent cipher is proposed and compared to a previous design. By using an upper bound power model, the first power analysis attack of a QCA cryptographic circuit (Serpent sub-module) is presented. The results show that in the best case scenario for attackers, QCA cryptographic circuits would be vulnerable to power analysis attack. However, the security of practical QCA circuits can be greatly improved by applying a smoother clock. Moreover, in the worst case scenario, reversible QCA circuits with Bennett clocking could be used as a natural countermeasure to power analysis attack. Therefore, it is believed that QCA could be a niche technology in the future for the implementation of security architectures resistant to power analysis attack. © 2014 Springer-Verlag
    corecore