32 research outputs found

    Prognostic Significance of Growth Kinetics in Newly Diagnosed Glioblastomas Revealed by Combining Serial Imaging with a Novel Biomathematical Model

    Get PDF
    Glioblastomas (GBMs) are the most aggressive primary brain tumors characterized by their rapid proliferation and diffuse infiltration of the brain tissue. Survival patterns in patients with GBM have been associated with a number of clinico-pathologic factors, including age and neurological status, yet a significant quantitative link to in vivo growth kinetics of each glioma has remained elusive. Exploiting a recently developed tool for quantifying glioma net proliferation and invasion rates in individual patients using routinely available magnetic resonance images (MRIs), we propose to link these patient-specific kinetic rates of biological aggressiveness to prognostic significance. Using our biologically-based mathematical model for glioma growth and invasion, examination of serial pre-treatment MRIs of 32 GBM patients allowed quantification of these rates for each patient’s tumor. Survival analyses revealed that even when controlling for standard clinical parameters (e.g., age, KPS) these model-defined parameters quantifying biologically aggressiveness (net proliferation and invasion rates) were significantly associated with prognosis. One hypothesis generated was that the ratio of the actual survival time after whatever therapies were employed to the duration of survival predicted (by the model) without any therapy would provide a “Therapeutic Response Index” (TRI) of the overall effectiveness of the therapies. The TRI may provided important information, not otherwise available, as to the effectiveness of the treatments in individual patients. To our knowledge, this is the first report indicating that dynamic insight from routinely obtained pre-treatment imaging may be quantitatively useful in characterizing survival of individual patients with GBM. Such a hybrid tool bridging mathematical modeling and clinical imaging may allow for statifying patients for clinical studies relative to their pretreatment biological aggressiveness

    Global burden of disease due to smokeless tobacco consumption in adults : analysis of data from 113 countries

    Get PDF
    BACKGROUND: Smokeless tobacco is consumed in most countries in the world. In view of its widespread use and increasing awareness of the associated risks, there is a need for a detailed assessment of its impact on health. We present the first global estimates of the burden of disease due to consumption of smokeless tobacco by adults. METHODS: The burden attributable to smokeless tobacco use in adults was estimated as a proportion of the disability-adjusted life-years (DALYs) lost and deaths reported in the 2010 Global Burden of Disease study. We used the comparative risk assessment method, which evaluates changes in population health that result from modifying a population's exposure to a risk factor. Population exposure was extrapolated from country-specific prevalence of smokeless tobacco consumption, and changes in population health were estimated using disease-specific risk estimates (relative risks/odds ratios) associated with it. Country-specific prevalence estimates were obtained through systematically searching for all relevant studies. Disease-specific risks were estimated by conducting systematic reviews and meta-analyses based on epidemiological studies. RESULTS: We found adult smokeless tobacco consumption figures for 115 countries and estimated burden of disease figures for 113 of these countries. Our estimates indicate that in 2010, smokeless tobacco use led to 1.7 million DALYs lost and 62,283 deaths due to cancers of mouth, pharynx and oesophagus and, based on data from the benchmark 52 country INTERHEART study, 4.7 million DALYs lost and 204,309 deaths from ischaemic heart disease. Over 85 % of this burden was in South-East Asia. CONCLUSIONS: Smokeless tobacco results in considerable, potentially preventable, global morbidity and mortality from cancer; estimates in relation to ischaemic heart disease need to be interpreted with more caution, but nonetheless suggest that the likely burden of disease is also substantial. The World Health Organization needs to consider incorporating regulation of smokeless tobacco into its Framework Convention for Tobacco Control

    SNAPSHOT USA 2020: A second coordinated national camera trap survey of the United States during the COVID-19 pandemic

    Get PDF
    Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved 152 scientists setting camera traps in a standardized protocol at 1485 locations across 103 arrays in 43 states for a total of 52,710 trap-nights of survey effort. Most (58) of these arrays were also sampled during the same months (September and October) in 2019, providing a direct comparison of animal populations in 2 years that includes data from both during and before the COVID-19 pandemic. All data were managed by the eMammal system, with all species identifications checked by at least two reviewers. In total, we recorded 117,415 detections of 78 species of wild mammals, 9236 detections of at least 43 species of birds, 15,851 detections of six domestic animals and 23,825 detections of humans or their vehicles. Spatial differences across arrays explained more variation in the relative abundance than temporal variation across years for all 38 species modeled, although there are examples of significant site-level differences among years for many species. Temporal results show how species allocate their time and can be used to study species interactions, including between humans and wildlife. These data provide a snapshot of the mammal community of the USA for 2020 and will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, and the impacts of species interactions on daily activity patterns. There are no copyright restrictions, and please cite this paper when using these data, or a subset of these data, for publication

    The natural history of <i>Chlamydia trachomatis </i>infection in women:a multi-parameter evidence synthesis

    Get PDF
    Background and objectives: The evidence base supporting the National Chlamydia Screening Programme, initiated in 2003, has been questioned repeatedly, with little consensus on modelling assumptions, parameter values or evidence sources to be used in cost-effectiveness analyses. The purpose of this project was to assemble all available evidence on the prevalence and incidence of Chlamydia trachomatis (CT) in the UK and its sequelae, pelvic inflammatory disease (PID), ectopic pregnancy (EP) and tubal factor infertility (TFI) to review the evidence base in its entirety, assess its consistency and, if possible, arrive at a coherent set of estimates consistent with all the evidence. Methods: Evidence was identified using ‘high-yield’ strategies. Bayesian Multi-Parameter Evidence Synthesis models were constructed for separate subparts of the clinical and population epidemiology of CT. Where possible, different types of data sources were statistically combined to derive coherent estimates. Where evidence was inconsistent, evidence sources were re-interpreted and new estimates derived on a post-hoc basis. Results: An internally coherent set of estimates was generated, consistent with a multifaceted evidence base, fertility surveys and routine UK statistics on PID and EP. Among the key findings were that the risk of PID (symptomatic or asymptomatic) following an untreated CT infection is 17.1% [95% credible interval (CrI) 6% to 29%] and the risk of salpingitis is 7.3% (95% CrI 2.2% to 14.0%). In women aged 16–24 years, screened at annual intervals, at best, 61% (95% CrI 55% to 67%) of CT-related PID and 22% (95% CrI 7% to 43%) of all PID could be directly prevented. For women aged 16–44 years, the proportions of PID, EP and TFI that are attributable to CT are estimated to be 20% (95% CrI 6% to 38%), 4.9% (95% CrI 1.2% to 12%) and 29% (95% CrI 9% to 56%), respectively. The prevalence of TFI in the UK in women at the end of their reproductive lives is 1.1%: this is consistent with all PID carrying a relatively high risk of reproductive damage, whether diagnosed or not. Every 1000 CT infections in women aged 16–44 years, on average, gives rise to approximately 171 episodes of PID and 73 of salpingitis, 2.0 EPs and 5.1 women with TFI at age 44 years. Conclusions and research recommendations: The study establishes a set of interpretations of the major studies and study designs, under which a coherent set of estimates can be generated. CT is a significant cause of PID and TFI. CT screening is of benefit to the individual, but detection and treatment of incident infection may be more beneficial. Women with lower abdominal pain need better advice on when to seek early medical attention to avoid risk of reproductive damage. The study provides new insights into the reproductive risks of PID and the role of CT. Further research is required on the proportions of PID, EP and TFI attributable to CT to confirm predictions made in this report, and to improve the precision of key estimates. The cost-effectiveness of screening should be re-evaluated using the findings of this report. Funding: The Medical Research Council grant G0801947

    The past, present, and future of the Brain Imaging Data Structure (BIDS)

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS

    Altering alpha-frequency brain oscillations with rapid analog feedback-driven neurostimulation.

    No full text
    Oscillations of the brain's local field potential (LFP) may coordinate neural ensembles and brain networks. It has been difficult to causally test this model or to translate its implications into treatments, because there are few reliable ways to alter LFP oscillations. We developed a closed-loop analog circuit to enhance brain oscillations by feeding them back into cortex through phase-locked transcranial electrical stimulation. We tested the system in a rhesus macaque with chronically implanted electrode arrays, targeting 8-15 Hz (alpha) oscillations. Ten seconds of stimulation increased alpha oscillatory power for up to 1 second after stimulation offset. In contrast, open-loop stimulation decreased alpha power. There was no effect in the neighboring 15-30 Hz (beta) LFP rhythm or on a neighboring array that did not participate in closed-loop feedback. Analog closed-loop neurostimulation might thus be a useful strategy for altering brain oscillations, both for basic research and the treatment of neuro-psychiatric disease

    Altering alpha-frequency brain oscillations with rapid analog feedback-driven neurostimulation

    No full text
    Oscillations of the brain’s local field potential (LFP) may coordinate neural ensembles and brain networks. It has been difficult to causally test this model or to translate its implications into treatments, because there are few reliable ways to alter LFP oscillations. We developed a closed-loop analog circuit to enhance brain oscillations by feeding them back into cortex through phase-locked transcranial electrical stimulation. We tested the system in a rhesus macaque with chronically implanted electrode arrays, targeting 8–15 Hz (alpha) oscillations. Ten seconds of stimulation increased alpha oscillatory power for up to 1 second after stimulation offset. In contrast, open-loop stimulation decreased alpha power. There was no effect in the neighboring 15–30 Hz (beta) LFP rhythm or on a neighboring array that did not participate in closed-loop feedback. Analog closed-loop neurostimulation might thus be a useful strategy for altering brain oscillations, both for basic research and the treatment of neuropsychiatric disease.MIT-MHG Strategic Initiative (grant)Massachusetts Institute of Technology. Undergraduate Research Opportunities ProgramPaul E. Gray FellowshipBrain & Behavior Research Foundation (MH109722 -01)Dauten Family Foundation (Bipolar Fund at Harvard University)Massachusetts Institute of Technology. Picower Innovation FundMIT Bose Fellowship Progra
    corecore