331 research outputs found
PRODUCCIÓN DE TOMATE EN INVERNADERO CON COMPOSTA Y VERMICOMPOSTA COMO SUSTRATO
The organic production of food is an alternative for consumers that prefer food free of pesticides, synthetic
fertilisers, and with a high nutritional value. The purpose of this study was to evaluate substrates prepared with
mixtures of compost and vermicompost with sand, at various levels, under greenhouse conditions. The tomato hybrid
SUN-7705 (Lycopersicon esculentum Mill) was analized in four substrates that included compost and vermicompost
mixed at three different proportions (100, 75 y 50 %). The treatments were distributed in a completely randomised
design with a factorial arrangement of 4x3 and five replicates. The greatest average yield (39.811 t ha) was obtained with the compost generated by decomposing bovine manure, corn stover (Zea mays L.), elephant grass (Pennisetum purpureum Schumacher) and black earth (CEMZT) at 75% + sand, and with the vermicompost generated by manure, bahiagrass (Paspalum notatum Flügge) and black earth (VEPT) at 100 and 50% + sand. This yield was greater than that recorded for organic tomato production in the field, without affecting the quality of the fruit
The Carnegie Supernova Project I: photometry data release of low-redshift stripped-envelope supernovae
The first phase of the Carnegie Supernova Project (CSP-I) was a dedicated
supernova follow-up program based at the Las Campanas Observatory that
collected science data of young, low-redshift supernovae between 2004 and 2009.
Presented in this paper is the CSP-I photometric data release of low-redshift
stripped-envelope core-collapse supernovae. The data consist of optical
(uBgVri) photometry of 34 objects, with a subset of 26 having near-infrared
(YJH) photometry. Twenty objects have optical pre-maximum coverage with a
subset of 12 beginning at least five days prior to the epoch of B-band maximum
brightness. In the near-infrared, 17 objects have pre-maximum observations with
a subset of 14 beginning at least five days prior to the epoch of J-band
maximum brightness. Analysis of this photometric data release is presented in
companion papers focusing on techniques to estimate host-galaxy extinction
(Stritzinger et al., submitted) and the light-curve and progenitor star
properties of the sample (Taddia et al., submitted). The analysis of an
accompanying visual-wavelength spectroscopy sample of ~150 spectra will be the
subject of a future paper.Comment: Updated a couple of small error
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
Agronomic response of two experimental varieties of habanero chili in the application of band vermicomposting
The habanero chili pepper has great productive potential in Mexico, with an annual growth of 12.5% in the planted area in the last five years. Objective: was to evaluate the agronomic response of two experimental varieties of habanero chili called HNC-6 orange color and HCC-8 chocolate color, belonging to the Center for Training and Development in Seed Technology. Methodology: the study was established under five doses of vermicompost, 0, 0.3, 0.6, 0.9 and 1.2 kg plant1using a completely random design with a 25 factorial arrangement. Results: the HNC-6 variety had a better agronomic response than HCC-8, its yield was 95% higher, the number of fruits per plant 84%, fruit length (FL) 25%, pericarp thickness 28%, fruit firmness 11%, and average fruit weight 4.7%. The HCC-8 variety exceeded the height of HNC-6 by 38% and the fruit diameter (FD) by 14%. The vermicompost doses exerted a similar effect on both varieties. In conclusion, the experimental variety HNC-6 showed a better agronomic response under the conditions tested. The vermicompost doses exerted a response effect and similar trend in the two experimental varieties of habanero pepper tested, the significant interactions found in FL, FD, and total soluble solids indicate that the application of vermicompost inf luenced the quality of the fruits in some aspects. Conclusions: the main factors that determined the response of the crop are its genetic component in response to the environment and the degree of maturity of the vermicompost
Operations of and Future Plans for the Pierre Auger Observatory
Technical reports on operations and features of the Pierre Auger Observatory,
including ongoing and planned enhancements and the status of the future
northern hemisphere portion of the Observatory. Contributions to the 31st
International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory
We present the results of searches for dipolar-type anisotropies in different
energy ranges above eV with the surface detector array of
the Pierre Auger Observatory, reporting on both the phase and the amplitude
measurements of the first harmonic modulation in the right-ascension
distribution. Upper limits on the amplitudes are obtained, which provide the
most stringent bounds at present, being below 2% at 99% for EeV
energies. We also compare our results to those of previous experiments as well
as with some theoretical expectations.Comment: 28 pages, 11 figure
- …
