682 research outputs found
Impurity (Fe, Cl, and P)-induced grain boundary and secondary phases in commercially pure titanium (CP-Ti)
A detailed transmission electron microscopy (TEM) study has been made of the microstructures of two as-sintered CP-Ti materials. We show that iron content at the impurity level of 1280 ppm, less than the limit (2000 ppm) for CP-Ti ASTM Grade 1, is sufficient to lead to the formation of a grain boundary (GB) β-Ti phase in the as-sintered microstructure due to segregation. The Fe-stabilized GB β-Ti phase contains ∼7 at. pct Fe and ∼1.5 at. pct Cl. In addition, nano-precipitates of ω-Ti exist in the Fe-stabilized GB β-Ti phase. A phosphorus (P)-enriched Ti-P-based phase was also identified, which has a tetragonal crystal structure with lattice parameters of (a = b = 8.0 ± 0.2 Å and c = 2.7 ± 0.2 Å) and is new to the existing database for Ti-P-enriched phases. As-sintered CP-Ti materials are thus not necessarily a single α-Ti phase material. These impurity-induced phases may exert potential impacts on the properties of sintered CP-Ti
Numerical Study of Gluon Propagator and Confinement Scenario in Minimal Coulomb Gauge
We present numerical results in SU(2) lattice gauge theory for the
space-space and time-time components of the gluon propagator at equal time in
the minimal Coulomb gauge. It is found that the equal-time would-be physical
3-dimensionally transverse gluon propagator vanishes at
when extrapolated to infinite lattice volume, whereas the
instantaneous color-Coulomb potential is strongly enhanced at
. This has a natural interpretation in a confinement scenario in
which the would-be physical gluons leave the physical spectrum while the
long-range Coulomb force confines color. Gribov's formula provides an excellent fit to our data
for the 3-dimensionally transverse equal-time gluon propagator
for relevant values of .Comment: 23 pages, 12 figures, TeX file. Minor modifications, incorporating
referee's suggestion
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Recommended from our members
Parallel computing in information retrieval - An updated review
The progress of parallel computing in Information Retrieval (IR) is reviewed. In particular we stress the importance of the motivation in using parallel computing for Text Retrieval. We analyse parallel IR systems using a classification due to Rasmussen [1] and describe some parallel IR systems. We give a description of the retrieval models used in parallel Information Processing.. We describe areas of research which we believe are needed
The Flare-energy Distributions Generated by Kink-unstable Ensembles of Zero-net-current Coronal Loops
It has been proposed that the million degree temperature of the corona is due
to the combined effect of barely-detectable energy releases, so called
nanoflares, that occur throughout the solar atmosphere. Alas, the nanoflare
density and brightness implied by this hypothesis means that conclusive
verification is beyond present observational abilities. Nevertheless, we
investigate the plausibility of the nanoflare hypothesis by constructing a
magnetohydrodynamic (MHD) model that can derive the energy of a nanoflare from
the nature of an ideal kink instability. The set of energy-releasing
instabilities is captured by an instability threshold for linear kink modes.
Each point on the threshold is associated with a unique energy release and so
we can predict a distribution of nanoflare energies. When the linear
instability threshold is crossed, the instability enters a nonlinear phase as
it is driven by current sheet reconnection. As the ensuing flare erupts and
declines, the field transitions to a lower energy state, which is modelled by
relaxation theory, i.e., helicity is conserved and the ratio of current to
field becomes invariant within the loop. We apply the model so that all the
loops within an ensemble achieve instability followed by energy-releasing
relaxation. The result is a nanoflare energy distribution. Furthermore, we
produce different distributions by varying the loop aspect ratio, the nature of
the path to instability taken by each loop and also the level of radial
expansion that may accompany loop relaxation. The heating rate obtained is just
sufficient for coronal heating. In addition, we also show that kink instability
cannot be associated with a critical magnetic twist value for every point along
the instability threshold
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider
This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
Observation of the baryonic decay B \uaf 0 \u2192 \u39bc+ p \uaf K-K+
We report the observation of the baryonic decay B\uaf0\u2192\u39bc+p\uafK-K+ using a data sample of 471
7106 BB\uaf pairs produced in e+e- annihilations at s=10.58GeV. This data sample was recorded with the BABAR detector at the PEP-II storage ring at SLAC. We find B(B\uaf0\u2192\u39bc+p\uafK-K+)=(2.5\ub10.4(stat)\ub10.2(syst)\ub10.6B(\u39bc+))
710-5, where the uncertainties are statistical, systematic, and due to the uncertainty of the \u39bc+\u2192pK-\u3c0+ branching fraction, respectively. The result has a significance corresponding to 5.0 standard deviations, including all uncertainties. For the resonant decay B\uaf0\u2192\u39bc+p\uaf\u3c6, we determine the upper limit B(B\uaf0\u2192\u39bc+p\uaf\u3c6)<1.2
710-5 at 90% confidence level
Measurement of the CP-Violating Asymmetry Amplitude sin2
We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes
Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission
The hot Local Bubble surrounding the solar neighborhood has been primarily
studied through observations of its soft X-ray emission. The measurements were
obtained by attributing all of the observed local soft X-rays to the bubble.
However, mounting evidence shows that the heliosphere also produces diffuse
X-rays. The source is solar wind ions that have received an electron from
another atom. The presence of this alternate explanation for locally produced
diffuse X-rays calls into question the existence and character of the Local
Bubble. This article addresses these questions. It reviews the literature on
solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts
for roughly half of the observed local 1/4 keV X-rays found at low latitudes.
This article also makes predictions for the heliospheric O VI column density
and intensity, finding them to be smaller than the observational error bars.
Evidence for the continued belief that the Local Bubble contains hot gas
includes the remaining local 1/4 keV intensity, the observed local O VI column
density, and the need to fill the local region with some sort of plasma. If the
true Local Bubble is half as bright as previously thought, then its electron
density and thermal pressure are 1/square-root(2) as great as previously
thought, and its energy requirements and emission measure are 1/2 as great as
previously thought. These adjustments can be accommodated easily, and, in fact,
bring the Local Bubble's pressure more in line with that of the adjacent
material. Suggestions for future work are made.Comment: 9 pages, refereed, accepted for publication in the proceedings of the
"From the Outer Heliosphere to the Local Bubble: Comparisons of New
Observations with Theory" conference and in Space Science Review
The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control.
The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies.
This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways.
The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha
- …
