646 research outputs found

    Phosphorus and Nitrogen Transport in the Binational Great Lakes Basin Estimated Using SPARROW Watershed Models

    Get PDF
    AbstractEutrophication problems in the Great Lakes are caused by excessive nutrient inputs (primarily phosphorus, P, and nitrogen, N) from various sources throughout its basin. In developing protection and restoration plans, it is important to know where and from what sources the nutrients originate. As part of a binational effort, Midcontinent SPARROW (SPAtially Referenced Regression On Watershed attributes) models were developed and used to estimate P and N loading from throughout the entire basin based on nutrient inputs similar to 2002; previous SPARROW models only estimated U.S. contributions. The new models have a higher resolution (~2‐km2 catchments) enabling improved descriptions of where nutrients originate and the sources at various spatial scales. The models were developed using harmonized geospatial datasets describing the stream network, nutrient sources, and environmental characteristics affecting P and N delivery. The models were calibrated using loads from sites estimated with ratio estimator and regression techniques and additional statistical approaches to reduce spatial correlation in the residuals and have all monitoring sites equally influence model development. SPARROW results, along with interlake transfers and direct atmospheric inputs, were used to quantify the entire P and N input to each lake and describe the importance of each nutrient source. Model results can be used to compare loading and yields from various tributaries and jurisdictions

    Stable isotopes can be used to infer the overwintering locations of prebreeding marine birds in the Canadian Arctic

    Get PDF
    Although assessments of winter carryover effects on fitness-related breeding parameters are vital for determining the links between environmental variation and fitness, direct methods of determining overwintering distributions (e.g., electronic tracking) can be expensive, limiting the number of individuals studied. Alternatively, stable isotope analysis in specific tissues can be used as an indirect means of determining individual overwintering areas of residency. Although increasingly used to infer the overwintering distributions of terrestrial birds, stable isotopes have been used less often to infer overwintering areas of marine birds. Using Arctic-breeding common eiders, we test the effectiveness of an integrated stable isotope approach (13-carbon, 15-nitrogen, and 2-hydrogen) to infer overwintering locations. Knowing the overwinter destinations of eiders from tracking studies at our study colony at East Bay Island, Nunavut, we sampled claw and blood tissues at two known overwintering locations, Nuuk, Greenland, and Newfoundland, Canada. These two locations yielded distinct tissue-specific isotopic profiles. We then compared the isotope profiles of tissues collected from eiders upon their arrival at our breeding colony, and used a k-means cluster analysis approach to match arriving eiders to an overwintering group. Samples from the claws of eiders were most effective for determining overwinter origin, due to this tissue\u27s slow growth rate relative to the 40-day turnover rate of blood. Despite taking an integrative approach using multiple isotopes, k-means cluster analysis was most effective when using 13-carbon alone to assign eiders to an overwintering group. Our research demonstrates that it is possible to use stable isotope analysis to assign an overwintering location to a marine bird. There are few examples of the effective use of this technique on a marine bird at this scale; we provide a framework for applying this technique to detect changes in the migration phenology of birds\u27 responses to rapid changes in the Arctic

    Divergence of the diapause transcriptome in apple maggot flies: winter regulation and post-winter transcriptional repression

    Get PDF
    Citation: Meyers, P. J., Powell, T. H. Q., Walden, K. K. O., Schieferecke, A. J., Feder, J. L., Hahn, D. A., . . . Ragland, G. J. (2016). Divergence of the diapause transcriptome in apple maggot flies: winter regulation and post-winter transcriptional repression. Journal of Experimental Biology, 219(17), 2613-2622. doi:10.1242/jeb.140566The duration of dormancy regulates seasonal timing in many organisms and may be modulated by day length and temperature. Though photoperiodic modulation has been well studied, temperature modulation of dormancy has received less attention. Here, we leverage genetic variation in diapause in the apple maggot fly, Rhagoletis pomonella, to test whether gene expression during winter or following spring warming regulates diapause duration. We used RNAseq to compare transcript abundance during and after simulated winter between an apple-infesting population and a hawthorn-infesting population where the apple population ends pupal diapause earlier than the hawthorn-infesting population. Marked differences in transcription between the two populations during winter suggests that the 'early' apple population is developmentally advanced compared with the 'late' hawthorn population prior to spring warming, with transcripts participating in growth and developmental processes relatively up-regulated in apple pupae during the winter cold period. Thus, regulatory differences during winter ultimately drive phenological differences that manifest themselves in the following summer. Expression and polymorphism analysis identify candidate genes in the Wnt and insulin signaling pathways that contribute to population differences in seasonality. Both populations remained in diapause and displayed a pattern of up-and then down-regulation (or vice versa) of growth-related transcripts following warming, consistent with transcriptional repression. The ability to repress growth stimulated by permissive temperatures is likely critical to avoid mismatched phenology and excessive metabolic demand. Compared with diapause studies in other insects, our results suggest some overlap in candidate genes/pathways, though the timing and direction of changes in transcription are likely species specific

    \u3csup\u3e1\u3c/sup\u3eH-MRS Metabolites in Adults with Down Syndrome: Effects of Dementia

    Get PDF
    To determine if proton magnetic resonance spectroscopy (1H-MRS) detect differences in dementia status in adults with Down syndrome (DS), we used 1H-MRS to measure neuronal and glial metabolites in the posterior cingulate cortex in 22 adults with DS and in 15 age- and gender-matched healthy controls. We evaluated associations between 1H-MRS results and cognition among DS participants. Neuronal biomarkers, including N-acetylaspartate (NAA) and glutamate-glutamine complex (Glx), were significantly lower in DS patients with Alzheimer\u27s should probably be changed to Alzheimer (without \u27 or s) through ms as per the new naming standard disease (DSAD) when compared to non-demented DS (DS) and healthy controls (CTL). Neuronal biomarkers therefore appear to reflect dementia status in DS. In contrast, all DS participants had significantly higher myo-inositol (MI), a putative glial biomarker, compared to CTL. Our data indicate that there may be an overall higher glial inflammatory component in DS compared to CTL prior to and possibly independent of developing dementia. When computing the NAA to MI ratio, we found that presence or absence of dementia could be distinguished in DS. NAA, Glx, and NAA/MI in all DS participants were correlated with scores from the Brief Praxis Test and the Severe Impairment Battery. 1H-MRS may be a useful diagnostic tool in future longitudinal studies to measure AD progression in persons with DS. In particular, NAA and the NAA/MI ratio is sensitive to the functional status of adults with DS, including prior to dementia

    RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus

    Get PDF
    Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions

    A 22-year Southern Sky Survey for Transient and Variable Radio Sources using the Molonglo Observatory Synthesis Telescope

    Full text link
    We describe a 22-year survey for variable and transient radio sources, performed with archival images taken with the Molonglo Observatory Synthesis Telescope (MOST). This survey covers 2775 \unit{deg^2} of the sky south of δ<30°\delta < -30\degree at an observing frequency of 843 MHz, an angular resolution of 45 \times 45 \csc | \delta| \unit{arcsec^2} and a sensitivity of 5 \sigma \geq 14 \unit{mJy beam^{-1}}. We describe a technique to compensate for image gain error, along with statistical techniques to check and classify variability in a population of light curves, with applicability to any image-based radio variability survey. Among radio light curves for almost 30000 sources, we present 53 highly variable sources and 15 transient sources. Only 3 of the transient sources, and none of the variable sources have been previously identified as transient or variable. Many of our variable sources are suspected scintillating Active Galactic Nuclei. We have identified three variable sources and one transient source that are likely to be associated with star forming galaxies at z0.05z \simeq 0.05, but whose implied luminosity is higher than the most luminous known radio supernova (SN1979C) by an order of magnitude. We also find a class of variable and transient source with no optical counterparts.Comment: Accepted for publication in MNRAS. 34 pages, 30 figures, 7 table

    Wide-Field Imaging and Polarimetry for the Biggest and Brightest in the 20GHz Southern Sky

    Full text link
    We present wide-field imaging and polarimetry at 20GHz of seven of the most extended, bright (Stot >= 0.50 Jy), high-frequency selected radio sources in the southern sky with declinations < -30 deg. Accompanying the data are brief reviews of the literature for each source, The results presented here aid in the statistical completeness of the Australia Telescope 20GHz Survey's bright source sample. The data are of crucial interest for future cosmic microwave background missions as a collection of information about candidate calibrator sources. We are able to obtain data for seven of the nine sources identified by our selection criteria. We report that Pictor A is thus far the best extragalactic calibrator candidate for the Low Frequency Instrument of the Planck European Space Agency mission due to its high level of integrated polarized flux density (0.50+/-0.06 Jy) on a scale of 10 arcmin. Six of the seven sources have a clearly detected compact radio core, with either a null or less than two percent detection of polarized emission from the nucleus. Most sources with detected jets have magnetic field alignments running in a longitudinal configuration, however PKS1333-33 exhibits transverse fields and an orthogonal change in field geometry from nucleus to jets.Comment: 17 pages, 9 figures, 2 table

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke

    Get PDF
    The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided
    corecore