118 research outputs found
Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal-Support Interactions and Water-Enabled Catalytic Conversion by Site Blocking
[EN] The transformation of methane into methanol or higher alcohols at moderate temperature and pressure conditions is of great environmental interest and remains a challenge despite many efforts. Extended surfaces of metallic nickel are inactive for a direct CH â CHOH conversion. This experimental and computational study provides clear evidence that low Ni loadings on a CeO(111) support can perform a direct catalytic cycle for the generation of methanol at low temperature using oxygen and water as reactants, with a higher selectivity than ever reported for ceria-based catalysts. On the basis of ambient pressure X-ray photoemission spectroscopy and density functional theory calculations, we demonstrate that water plays a crucial role in blocking catalyst sites where methyl species could fully decompose, an essential factor for diminishing the production of CO and CO, and in generating sites on which methoxy species and ultimately methanol can form. In addition to water-site blocking, one needs the effects of metal-support interactions to bind and activate methane and water. These findings should be considered when designing metal/oxide catalysts for converting methane to value-added chemicals and fuels.The work carried out at Brookhaven National Laboratory was supported by the U.S. Department of Energy (Chemical Sciences Division, DE-SC0012704). S.D.S. is supported by a U.S. Department of Energy Early Career Award. This research used resources of the Advanced Light Source (Beamline 9.3.2),which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231. Authors acknowledge contribution of Dr. Ethan Crumlin for assistance with AP-XPS measurements. M.V.G.-P. acknowledges the financial support of the /Ministry of Economy and Competitiveness MINECO-Spain (Grant No. CTQ2015-78823-R) and P.G.L. that of the Agencia Nacional de Promocion CientĂfiica y Tecnologica-Argentina (Grant No. PICT-2016-2750). Computer time provided by the BIFI-ZCAM, RES at the Marenostrum and La Palma nodes, SNCAD (Sistema Nacional de ComputacioÌn de Alto DesempenÌo, Argentina), and the DECI resources BEM based in Poland at WCSS and Archer at EPCC with support from the PRACE aislb, is acknowledged. M.V. thanks the Ministry of
Education, Youth and Sports of the Czech Republic for financial support under Project LH15277. R.M.P. was partially funded by the AGEP-T (Alliance for Graduate Education and the ProfessoriateâTransformation) which is funded by the National Science Foundation, award #131131
In situ characterization of mesoporous Co/CeO2 catalysts for the high-temperature water-gas shift
Mesoporous Co/CeO2 catalysts were found to exhibit significant activity for the high-temperature water-gas shift (WGS) reaction with cobalt loadings as low as 1 wt %. The catalysts feature a uniform dispersion of cobalt within the CeO2 fluorite type lattice with no evidence of discrete cobalt phase segregation. In situ XANES and ambient pressure XPS experiments were used to elucidate the active state of the catalysts as partially reduced cerium oxide doped with oxidized cobalt atoms. In situ XRD and DRIFTS experiments suggest facile cerium reduction and oxygen vacancy formation, particularly with lower cobalt loadings. In situ DRIFTS analysis also revealed the presence of surface carbonate and bidentate formate species under reaction conditions, which may be associated with additional mechanistic pathways for the WGS reaction. Deactivation behavior was observed with higher cobalt loadings. XANES data suggest the formation of small metallic cobalt clusters at temperatures above 400 °C may be responsible. Notably, this deactivation was not observed for the 1% cobalt loaded catalyst, which exhibited the highest activity per unit of cobalt.Peer ReviewedPostprint (author's final draft
In situ elucidation of the active state of Co-CeOx catalysts in the dry reforming of methane: the important role of the reducible oxide support and interactions with cobalt
The dry reforming of methane was systematically studied over a series (2-30 wt%) of Co (~5nm in size) loaded CeO2 catalysts, with an effort to elucidate the behavior of Co and ceria in the catalytic process using in-situ methods. For the systems under study, the reaction activity scaled with increasing Co loading, and a 10 wt% Co-CeO2 catalyst exhibiting the best catalytic activity and good stability at 500 °C with little evidence for carbon accumulation. The phase transitions and the nature of active components in the catalyst were investigated during pretreatment and under reaction conditions by ex-situ/in-situ techniques including X-ray diffraction (XRD) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). These studies showed a dynamical evolution in the chemical composition of the catalysts under reaction conditions. A clear transition of Co3O4 â CoO â Co, and Ce4+ to Ce3+, was observed during the temperature programmed reduction under H2 and CH4. However, introduction of CO2, led to partial re-oxidation of all components at low temperatures, followed by reduction at high temperatures. Under optimum CO and H2 producing conditions both XRD and AP-XPS indicated that the active phase involved a majority of metallic Co with a small amount of CoO both supported on a partially reduced ceria (Ce3+/Ce4+). We identified the importance of dispersing Co, anchoring it onto ceria surface sites, and then utilizing the redox properties of ceria for activating and then oxidatively converting methane while inhibiting coke formation. Furthermore, a synergistic effect between cobalt and ceria and the interfacial site are essential to successfully close the catalytic cycle.Peer ReviewedPostprint (author's final draft
Recommended from our members
A US perspective on closing the carbon cycle to defossilize difficult-to-electrify segments of our economy
Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets
Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity
A. Palotie on työryhmÀn UK10K Consortium jÀsen.Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were sometimes found with accelerated growth rather than short stature as described previously. Nominally significant associations were found for rare functional variants in BBS1, BBS9, GNAS, MKKS, CLOCK and ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF similar to 0.1%, odds ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including additional case-control studies and population controls (N = 260,642) did not support association of this variant with obesity (odds ratio = 2.34, p-value = 2.59 x 10(-3)), highlighting the challenges of testing rare variant associations and the need for very large sample sizes. Further validation in cohorts with severe obesity and engineering the variants in model organisms will be needed to explore whether human variants in ANGPTL6 and other genes that lead to obesity when deleted in mice, do contribute to obesity. Such studies may yield druggable targets for weight loss therapies.Peer reviewe
Evaluation of 22 genetic variants with Crohn's Disease risk in the Ashkenazi Jewish population: a case-control study
<p>Abstract</p> <p>Background</p> <p>Crohn's disease (CD) has the highest prevalence among individuals of Ashkenazi Jewish (AJ) descent compared to non-Jewish Caucasian populations (NJ). We evaluated a set of well-established CD-susceptibility variants to determine if they can explain the increased CD risk in the AJ population.</p> <p>Methods</p> <p>We recruited 369 AJ CD patients and 503 AJ controls, genotyped 22 single nucleotide polymorphisms (SNPs) at or near 10 CD-associated genes, <it>NOD2</it>, <it>IL23R</it>, <it>IRGM</it>, <it>ATG16L1</it>, <it>PTGER4</it>, <it>NKX2-3</it>, <it>IL12B</it>, <it>PTPN2</it>, <it>TNFSF15 </it>and <it>STAT3</it>, and assessed their association with CD status. We generated genetic scores based on the risk allele count alone and the risk allele count weighed by the effect size, and evaluated their predictive value.</p> <p>Results</p> <p>Three <it>NOD2 </it>SNPs, two <it>IL23R </it>SNPs, and one SNP each at <it>IRGM </it>and <it>PTGER4 </it>were independently associated with CD risk. Carriage of 7 or more copies of these risk alleles or the weighted genetic risk score of 7 or greater correctly classified 92% (allelic count score) and 83% (weighted score) of the controls; however, only 29% and 47% of the cases were identified as having the disease, respectively. This cutoff was associated with a >4-fold increased disease risk (p < 10e-16).</p> <p>Conclusions</p> <p>CD-associated genetic risks were similar to those reported in NJ population and are unlikely to explain the excess prevalence of the disease in AJ individuals. These results support the existence of novel, yet unidentified, genetic variants unique to this population. Understanding of ethnic and racial differences in disease susceptibility may help unravel the pathogenesis of CD leading to new personalized diagnostic and therapeutic approaches.</p
Precise Measurement of the Neutrino Mixing Parameter theta(23) from Muon Neutrino Disappearance in an Off-Axis Beam
New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter theta_{23}. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57 x 10^{20} protons on target, T2K has fit the energy-dependent nu_mu oscillation probability to determine oscillation parameters. Marginalizing over the values of other oscillation parameters yields sin^2 (theta_{23}) = 0.514 +0.055/-0.056 (0.511 +- 0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Delta m^2_{32} = (2.51 +- 0.10) x 10^{-3} eV^2/c^4 (inverted hierarchy: Delta m^2_{13} = (2.48 +- 0.10) x 10^{-3} eV^2/c^4). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty
Measurement of the intrinsic electron neutrino component in the T2K neutrino beam with the ND280 detector
The T2K experiment has reported the first observation of the appearance of electron neutrinos in a muon neutrino beam. The main and irreducible background to the appearance signal comes from the presence in the neutrino beam of a small intrinsic component of electron neutrinos originating from muon and kaon decays. In T2K, this component is expected to represent 1.2% of the total neutrino flux. A measurement of this component using the near detector (ND280), located 280 m from the target, is presented. The charged current interactions of electron neutrinos are selected by combining the particle identification capabilities of both the time projection chambers and electromagnetic calorimeters of ND280. The measured ratio between the observed electron neutrino beam component and the prediction is 1.01 +/- 0.10 providing a direct confirmation of the neutrino fluxes and neutrino cross section modeling used for T2K neutrino oscillation analyses. Electron neutrinos coming from muons and kaons decay are also separately measured, resulting in a ratio with respect to the prediction of 0.68 +/- 0.30 and 1.10 +/- 0.14, respectively
Measurement of the neutrino-oxygen neutral-current interaction cross section by observing nuclear deexcitation gamma rays
We report the first measurement of the neutrino-oxygen neutral-current quasielastic (NCQE) cross section gamma It is obtained by observing nuclear deexcitation. rays which follow neutrino-oxygen interactions at the Super-Kamiokande water Cherenkov detector. We use T2K data corresponding to 3.01 x 10(20) protons on target. By selecting only events during the T2K beam window and with well-reconstructed vertices in the fiducial volume, the large background rate from natural radioactivity is dramatically reduced. We observe 43 events in the 4-30 MeV reconstructed energy window, compared with an expectation of 51.0, which includes an estimated 16.2 background events. The background is primarily nonquasielastic neutral-current interactions and has only 1.2 events from natural radioactivity. The flux-averaged NCQE cross section we measure is 1.55 x 10(-38) cm(2) with a 68% confidence interval of (1.22, 2.20) x 10(-38) cm(2) at a median neutrino energy of 630 MeV, compared with the theoretical prediction of 2.01 x 10(-38) cm(2)
Biochemical and structural characterization of mycobacterial aspartyl-tRNA synthetase AspS, a promising TB drug target.
The human pathogen Mycobacterium tuberculosis is the causative agent of pulmonary tuberculosis (TB), a disease with high worldwide mortality rates. Current treatment programs are under significant threat from multi-drug and extensively-drug resistant strains of M. tuberculosis, and it is essential to identify new inhibitors and their targets. We generated spontaneous resistant mutants in Mycobacterium bovis BCG in the presence of 10Ă the minimum inhibitory concentration (MIC) of compound 1, a previously identified potent inhibitor of mycobacterial growth in culture. Whole genome sequencing of two resistant mutants revealed in one case a single nucleotide polymorphism in the gene aspS at 535GAC>535AAC (D179N), while in the second mutant a single nucleotide polymorphism was identified upstream of the aspS promoter region. We probed whole cell target engagement by overexpressing either M. bovis BCG aspS or Mycobacterium smegmatis aspS, which resulted in a ten-fold and greater than ten-fold increase, respectively, of the MIC against compound 1. To analyse the impact of inhibitor 1 on M. tuberculosis AspS (Mt-AspS) activity we over-expressed, purified and characterised the kinetics of this enzyme using a robust tRNA-independent assay adapted to a high-throughput screening format. Finally, to aid hit-to-lead optimization, the crystal structure of apo M. smegmatis AspS was determined to a resolution of 2.4 Ă
- âŠ